Skip to content
1887

Abstract

The genus (, ) comprises several globally important vector-borne animal viruses, such as borne bluetongue virus, African horse sickness virus and epizootic haemorrhagic disease virus (EHDV). Orbiviruses that are associated with mosquitoes are a diverse group including established mosquito-borne animal pathogens such as the Peruvian horse sickness virus and phylogenetically related less well-characterized viruses isolated mostly from mammals. Although reported from various geographic regions, these viruses have not previously been detected in northern Europe. Using next-generation sequencing and bioinformatic tools, we identified two orbivirus strains from virus isolation trials of Finnish specimens performed in mosquito C6/36 cells. Phylogenetic analysis of the obtained sequence data suggested one of the isolates to represent a strain of Mobuck virus (MBV), previously described in the USA from a diseased white-tailed deer coinfected with EHDV. The second isolate, which originated from Kevo in northern Finland, was found divergent from all publicly available orbivirus sequences and was tentatively named as Kevo orbivirus (KEVOOV). Further studies are required to investigate the potential animal disease associations of the newly detected orbiviruses KEVOOV and MBV in Finland and possibly wider in Northern Europe.

Funding
This study was supported by the:
  • EU4Health DURABLE (Award Nr 101102733)
    • Principle Award Recipient: OlliVapalahti
  • Sigrid Juséliuksen Säätiö
    • Principle Award Recipient: EiliHuhtamo
  • Horizon 2020 (Award 874735)
    • Principle Award Recipient: OlliVapalahti
  • Academy of Finland (Award No 351040)
    • Principle Award Recipient: OlliVapalahti
  • Jane ja Aatos Erkon Säätiö
    • Principle Award Recipient: OlliVapalahti
  • Helsinki Institute of Life Science, Helsingin Yliopisto
    • Principle Award Recipient: EiliHuhtamo
  • Doctoral programme in Microbiology and Biotechnology of University of Helsinki
    • Principle Award Recipient: MaijaT. Suvanto
  • Suomen Eläinlääketieteen Säätiö
    • Principle Award Recipient: MaijaT. Suvanto
  • Otto A. Malm Lahjoitusrahasto
    • Principle Award Recipient: MaijaT. Suvanto
  • Societas Biologica Fennica Vanamo
    • Principle Award Recipient: MaijaT. Suvanto
  • Finnish Society for Study of Infectious Diseases
    • Principle Award Recipient: MaijaT. Suvanto
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.002101
2025-06-06
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/106/6/jgv002101.html?itemId=/content/journal/jgv/10.1099/jgv.0.002101&mimeType=html&fmt=ahah

References

  1. Suvanto M, Truong Nguyen P, Vauhkonen H, Olander V, Joensuu R et al. Isolation and genetic characterization of a novel kevo orbivirus and a strain of mobuck virus from ochlerotatus communis mosquitoes in finland. Microbiology Society 2025 https://doi.org/10.6084/m9.figshare.28760873
    [Google Scholar]
  2. Attoui H, Mohd Jaafar F. Zoonotic and emerging orbivirus infections. Rev Sci Tech 2015; 34:353–361 [View Article] [PubMed]
    [Google Scholar]
  3. Ahasan MS, Subramaniam K, Campos Krauer JM, Sayler KA, Loeb JC et al. Three new orbivirus species isolated from farmed white-tailed deer (Odocoileus virginianus) in the United States. Viruses 2019; 12:13 [View Article] [PubMed]
    [Google Scholar]
  4. Silva SP, Dilcher M, Weidmann M, Carvalho VL, Casseb AR et al. Changuinola virus serogroup, new genomes within the genus Orbivirus (family Reoviridae) isolated in the Brazilian Amazon region. Genome Announc 2013; 1:e00940-13 [View Article] [PubMed]
    [Google Scholar]
  5. Phumee A, Wacharapluesadee S, Petcharat S, Tawatsin A, Thavara U et al. Detection of Changuinola virus (Reoviridae: Orbivirus) in field-caught sand flies in southern Thailand. Trans R Soc Trop Med Hyg 2021; 115:1039–1044 [View Article] [PubMed]
    [Google Scholar]
  6. Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. Epizootic hemorrhagic disease virus: current knowledge and emerging perspectives. Microorganisms 2023; 11:1339 [View Article] [PubMed]
    [Google Scholar]
  7. Carpenter S, Mellor PS, Fall AG, Garros C, Venter GJ. African horse sickness virus: history, transmission, and current status. Annu Rev Entomol 2017; 62:343–358 [View Article] [PubMed]
    [Google Scholar]
  8. Gethmann J, Probst C, Conraths FJ. Economic impact of a Bluetongue serotype 8 epidemic in Germany. Front Vet Sci 2020; 7:65 [View Article] [PubMed]
    [Google Scholar]
  9. Attoui H, Mendez-Lopez MR, Rao S, Hurtado-Alendes A, Lizaraso-Caparo F et al. Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia. Virology 2009; 394:298–310 [View Article] [PubMed]
    [Google Scholar]
  10. Patroca da Silva S, Barbosa de Almeida Medeiros D, Ribeiro Cruz AC, Marques França AF, Diniz Nunes BT et al. Co-infection of Peruvian horse sickness virus and West Nile virus associated with neurological diseases in horses from Brazil. Heliyon 2022; 8:e12097 [View Article] [PubMed]
    [Google Scholar]
  11. Attoui H, Jaafar FM, Belhouchet M, Aldrovandi N, Tao S et al. Yunnan orbivirus, a new orbivirus species isolated from Culex tritaeniorhynchus mosquitoes in China. J Gen Virol 2005; 86:3409–3417 [View Article] [PubMed]
    [Google Scholar]
  12. Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N et al. Genomes of viral isolates derived from different mosquitos species. Virus Res 2017; 242:49–57 [View Article] [PubMed]
    [Google Scholar]
  13. Méndez-López MR, Attoui H, Florin D, Calisher CH, Florian-Carrillo JC et al. Association of vectors and environmental conditions during the emergence of Peruvian horse sickness orbivirus and Yunnan orbivirus in northern Peru. J Vector Ecol 2015; 40:355–363 [View Article] [PubMed]
    [Google Scholar]
  14. Murota K, Ishii K, Mekaru Y, Araki M, Suda Y et al. Isolation of Culicoides- and mosquito-borne orbiviruses in the southwestern islands of Japan between 2014 and 2019. Vector Borne Zoonotic Dis 2021; 21:796–808 [View Article] [PubMed]
    [Google Scholar]
  15. Viadanna PHO, Rodrigues TCS, Subramaniam K, Campos Krauer JM, Lednicky JA et al. Genome sequence of a Yunnan orbivirus isolated from a dead Florida white-tailed deer (Odocoileus virginianus). Microbiol Resour Announc 2021; 10:e00168-21 [View Article] [PubMed]
    [Google Scholar]
  16. Okamoto K, Endo Y, Inoue S, Nabeshima T, Nga PT et al. Development of a rapid and comprehensive proteomics-based arboviruses detection system. J Virol Methods 2010; 167:31–36 [View Article] [PubMed]
    [Google Scholar]
  17. Rodrigues TCS, Lednicky JA, Loeb JC, Campos Krauer JM, Wisely SM et al. Genome sequence of a CHeRI Orbivirus 3 strain isolated from a dead white-tailed deer (Odocoileus virginianus) in Florida, USA. Microbiol Resour Announc 2020; 9: [View Article]
    [Google Scholar]
  18. Cooper E, Anbalagan S, Klumper P, Scherba G, Simonson RR et al. Mobuck virus genome sequence and phylogenetic analysis: identification of a novel Orbivirus isolated from a white-tailed deer in Missouri, USA. J Gen Virol 2014; 95:110–116 [View Article] [PubMed]
    [Google Scholar]
  19. Ahasan MS, Campos Krauer JM, Subramaniam K, Lednicky JA, Loeb JC et al. Complete genome sequence of Mobuck virus isolated from a Florida white-tailed deer (Odocoileus virginianus). Microbiol Resour Announc 2019; 8:e01324-18 [View Article] [PubMed]
    [Google Scholar]
  20. Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM et al. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. elife 2021; 10:e68353 [View Article] [PubMed]
    [Google Scholar]
  21. Cowled C, Melville L, Weir R, Walsh S, Hyatt A et al. Genetic and epidemiological characterization of Middle Point orbivirus, a novel virus isolated from sentinel cattle in northern Australia. J Gen Virol 2007; 88:3413–3422 [View Article] [PubMed]
    [Google Scholar]
  22. Murota K, Suda Y, Shirafuji H, Ishii K, Katagiri Y et al. Identification and characterization of a novel orbivirus, Yonaguni orbivirus, isolated from cattle on the westernmost island of Japan. Arch Virol 2020; 165:2903–2908 [View Article] [PubMed]
    [Google Scholar]
  23. Yang Z, He Y, Meng J, Li N, Wang J. Full-genome characterisation of a putative novel serotype of Yonaguni orbivirus isolated from cattle in Yunnan province, China. Virus Genes 2023; 59:223–233 [View Article] [PubMed]
    [Google Scholar]
  24. Yang H, Li Zhan H, Zhang Yi X, Gao L, Xie Jia R et al. Isolation and genomic characterization of a novel orbivirus strain from the blood of cattle; 2018
  25. Truong Nguyen PT, Culverwell CL, Suvanto MT, Korhonen EM, Uusitalo R et al. Characterisation of the RNA virome of nine Ochlerotatus species in Finland. Viruses 2022; 14:1489 [View Article] [PubMed]
    [Google Scholar]
  26. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  27. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  28. Somervuo P, Holm L. SANSparallel: interactive homology search against Uniprot. Nucleic Acids Res 2015; 43:W24–9 [View Article] [PubMed]
    [Google Scholar]
  29. Plyusnin I, Kant R, Jääskeläinen AJ, Sironen T, Holm L et al. Novel NGS pipeline for virus discovery from a wide spectrum of hosts and sample types. Virus Evol 2020; 6:veaa091 [View Article] [PubMed]
    [Google Scholar]
  30. Maan S, Rao S, Maan NS, Anthony SJ, Attoui H et al. Rapid cDNA synthesis and sequencing techniques for the genetic study of bluetongue and other dsRNA viruses. J Virol Methods 2007; 143:132–139 [View Article] [PubMed]
    [Google Scholar]
  31. Potgieter AC, Page NA, Liebenberg J, Wright IM, Landt O et al. Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J Gen Virol 2009; 90:1423–1432 [View Article] [PubMed]
    [Google Scholar]
  32. NCBI NCBI Virus. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-2024; n.d https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/ accessed 12 November 2024 [PubMed]
  33. NCBI NCBI ORFfinder. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-2024; n.d https://www.ncbi.nlm.nih.gov/orffinder/ accessed 15 November 2024 [PubMed]
  34. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  35. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  36. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  37. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article]
    [Google Scholar]
  38. NCBI NCBI Conserved Domain Search: Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-2024; n.d https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi? accessed 20 November 2024 [PubMed]
  39. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 2020; 48:D265–D268 [View Article] [PubMed]
    [Google Scholar]
  40. NCBI BLASTX. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2024 https://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome accessed 12 November 2024
  41. Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 2016; 11:e0163962 [View Article] [PubMed]
    [Google Scholar]
  42. Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res 2024; 52:W521–W525 [View Article] [PubMed]
    [Google Scholar]
  43. Martin DP, Varsani A, Roumagnac P, Botha G, Maslamoney S et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol 2021; 7:veaa087 [View Article] [PubMed]
    [Google Scholar]
  44. Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 1963; 17:208–212 [View Article] [PubMed]
    [Google Scholar]
  45. Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol 2016; 14:e1002340 [View Article] [PubMed]
    [Google Scholar]
  46. Belaganahalli MN, Maan S, Maan NS, Brownlie J, Tesh R et al. Genetic characterization of the tick-borne orbiviruses. Viruses 2015; 7:2185–2209 [View Article] [PubMed]
    [Google Scholar]
  47. Xia X, Sung P-Y, Martynowycz MW, Gonen T, Roy P et al. RNA genome packaging and capsid assembly of bluetongue virus visualized in host cells. Cell 2024; 187:2236–2249 [View Article] [PubMed]
    [Google Scholar]
  48. Saikku P, Brummer-Korvenkontio M. Tick-borne viruses in Finland. Med Biol 1975; 53:317–320 [PubMed]
    [Google Scholar]
  49. Ruokavirasto Epitsoottisen verenvuototautiviruksen aiheuttama tartunta (EHD-tauti): Finnish Food Authority; 2024 https://www.ruokavirasto.fi/elaimet/elainten-terveys-ja-elaintaudit/elaintaudit/usealle-elainlajille-yhteiset-taudit/epitsoottisen-verenvuototautiviruksen-aiheuttama-tartunta-ehd-tauti accessed 25 September 2024
  50. Ruokavirasto Afrikkalainen hevosrutto: Finnish Food Authority; 2024 https://www.ruokavirasto.fi/elaimet/elainten-terveys-ja-elaintaudit/elaintaudit/hevoset/afrikkalainen-hevosrutto accessed 25 September 2024
  51. Ruokavirasto Sinikielitauti eli bluetongue: Finnish Food Authority; 2024 https://www.ruokavirasto.fi/elaimet/elainten-terveys-ja-elaintaudit/elaintaudit/usealle-elainlajille-yhteiset-taudit/sinikielitauti-eli-bluetongue accessed 25 September 2024
  52. Tryland M, Cunha CW, Fuchs B, Breines EM, Li H et al. A serological screening for potential viral pathogens among semi-domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus) in Finland. Acta Vet Scand 2023; 65:8 [View Article] [PubMed]
    [Google Scholar]
  53. The Associated Press Denmark reports cases of bluetongue disease that can be fatal to sheep but is harmless to humans; 2024 https://apnews.com/article/denmark-bluetongue-disease-sheep-cattle-db58cec0615d01569b69594a18384156 accessed 16 September 2024
  54. ProMed ProMED-email: Subject: PRO/AH/EDR> Bluetongue - Europe (13): Italy (st 8) livestock, camel, Norway, UK (st 3) livestock, RFI. ProMED-mail; 2024 https://promedmail.org/promed-post/?id=8718914 accessed 24 September 2024
  55. ProMed ProMED-email: Subject: PRO/AH/EDR> Bluetongue - Europe (12): Sweden (GT) 1st rep, UK (EX) spread. ProMED-mail; 2024 https://promedmail.org/promed-post/?id=8718865 accessed 24 September 2024
  56. Ruokavirasto Animal Diseases in Finland 2023. Finnish Food Authority publications; 2024
  57. Mohd Jaafar F, Belhouchet M, Monsion B, Bell-Sakyi L, Mertens PPC et al. Orbivirus NS4 proteins play multiple roles to dampen cellular responses. Viruses 2023; 15:1908 [View Article] [PubMed]
    [Google Scholar]
  58. Sequence NR. Peruvian horse sickness virus segment 9, complete genome NC_007753.1: GenBank NCBI Reference Sequence n.d https://www.ncbi.nlm.nih.gov/nuccore/NC_007753.1 [PubMed]
    [Google Scholar]
  59. Culverwell CL, Uusitalo RJ, Korhonen EM, Vapalahti OP, Huhtamo E et al. The mosquitoes of Finland: updated distributions and bionomics. Med Vet Entomol 2021; 35:1–29 [View Article] [PubMed]
    [Google Scholar]
  60. Becker ND, Zgomba M, Boase C, Madon MB, Dahl C et al. Mosquitoes. Identification, Ecology and Control; 2010
  61. Luonnonvaratieto Luonnonvaratieto: Luke; 2024 https://luonnonvaratieto.luke.fi/kartat?panel=hirvi-ja-sorkkaelaimet accessed 22 December 2024
/content/journal/jgv/10.1099/jgv.0.002101
Loading
/content/journal/jgv/10.1099/jgv.0.002101
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error