1887

Abstract

The 2020/2021 epidemic in Europe of highly pathogenic avian influenza virus (HPAIV) of subtype H5 surpassed all previously recorded European outbreaks in size, genotype constellations and reassortment frequency and continued into 2022 and 2023. The causative 2.3.4.4b viral lineage proved to be highly proficient with respect to reassortment with cocirculating low pathogenic avian influenza viruses and seems to establish an endemic status in northern Europe. A specific HPAIV reassortant of the subtype H5N3 was detected almost exclusively in red knots () in December 2020. It caused systemic and rapidly fatal disease leading to a singular and self-limiting mass mortality affecting about 3500 birds in the German Wadden Sea, roughly 1 % of the entire flyway population of red knots. Phylogenetic analyses revealed that the H5N3 reassortant very likely had formed in red knots and remained confined to this species. While mechanisms of virus circulation in potential reservoir species, dynamics of spill-over and reassortment events and the roles of environmental virus sources remain to be identified, the year-round infection pressure poses severe threats to endangered avian species and prompts adaptation of habitat and species conservation practices.

Funding
This study was supported by the:
  • EU Horizon 2020 (Award 874735)
    • Principle Award Recipient: MartinBeer
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.002003
2024-07-08
2024-07-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/105/7/jgv002003.html?itemId=/content/journal/jgv/10.1099/jgv.0.002003&mimeType=html&fmt=ahah

References

  1. Johnson JA, DeCicco LH, Ruthrauff DR, Krauss S, Hall JS. Avian influenza virus antibodies in Pacific Coast Red Knots (Calidris canutus roselaari). J Wildl Dis 2014; 50:671–675 [View Article] [PubMed]
    [Google Scholar]
  2. Wetlands International Waterbird population estimates; 2023 www.wetlands.org accessed 15 February 2023
  3. Meltofte H Blew J, Frikke J, Rösner H-U, Smit CJ. Numbers and distribution of Waterbirds in the Wadden sea: results and evaluation of 36 simultaneous counts in the Dutch-German-Danish Wadden sea. Wader Study Group Bull In press 74:1994
    [Google Scholar]
  4. del Hoyo J, Elliot J, Sargatal J. Handbook of the birds of the world. In Lynx Edicions vol 3 1996
    [Google Scholar]
  5. Kleefstra R, Bregnballe T, Frikke J, Günther K, Hälterlein B et al. Trends of Migratory and Wintering Waterbirds in the Wadden Sea 1987/1988 - 2019/2020 Wilhelmshaven, Germany: Common Wadden Sea Secretariat, Expert Group Migratory Birds. Wadden Sea Ecosystem; 2022
    [Google Scholar]
  6. Koffijberg K, Blew J, Eskildsen K, Günther K, Koks B et al. High tide roosts in the Wadden Sea: a review of bird distribution, protection regimes and potential sources of anthropogenic disturbance. WIlhelmshaven, Germany: Common Wadden Sea Secretariat; n.d https://www.waddensea-worldheritage.org/resources/ecosystem-16-high-tide-roosts-wadden-sea accessed 23 February 2023
  7. BirdLife European red list of birds 2021; 2022 http://datazone.birdlife.org/info/euroredlist2021 accessed 20 April 2023
  8. Zwarts L, Blomert A-M. Why knot Calidris canutus take medium-sized Macoma balthica when six prey species are available. Mar Ecol Prog Ser 1992; 83:113–128 [View Article]
    [Google Scholar]
  9. Pittman M, Laddomada A, Freigofas R, Freigofas R, Piazza V et al. Surveillance, prevention, and disease management of avian influenza in the European Union. J Wildilfe Dis 2007; 43:
    [Google Scholar]
  10. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME et al. Global patterns of influenza a virus in wild birds. Science 2006; 312:384–388 [View Article] [PubMed]
    [Google Scholar]
  11. Munster VJ, Baas C, Lexmond P, Waldenström J, Wallensten A et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 2007; 3:e61 [View Article] [PubMed]
    [Google Scholar]
  12. Gaidet N, Ould El Mamy AB, Cappelle J, Caron A, Cumming GS et al. Investigating avian influenza infection hotspots in old-world shorebirds. PLoS One 2012; 7:e46049 [View Article] [PubMed]
    [Google Scholar]
  13. Poulson RL, Luttrell PM, Slusher MJ, Wilcox BR, Niles LJ et al. Influenza A virus: sampling of the unique shorebird habitat at Delaware Bay, USA. R Soc Open Sci 2017; 4:171420 [View Article] [PubMed]
    [Google Scholar]
  14. Becker WB. The isolation and classification of tern virus: influenza A-tern South Africa--1961. J Hyg 1966; 64:309–320 [View Article] [PubMed]
    [Google Scholar]
  15. Abolnik C, Pieterse R, Peyrot BM, Choma P, Phiri TP et al. The incursion and spread of highly pathogenic avian influenza H5N8 clade 2.3.4.4 within South Africa. Avian Dis 2019; 63:149–156 [View Article] [PubMed]
    [Google Scholar]
  16. Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S et al. Avian influenza overview February - May 2021. EFSA J 2021; 19:e06951 [View Article] [PubMed]
    [Google Scholar]
  17. King J, Harder T, Globig A, Stacker L, Günther A et al. Highly pathogenic avian influenza virus incursions of subtype H5N8, H5N5, H5N1, H5N4, and H5N3 in Germany during 2020-21. Virus Evol 2022; 8:veac035 [View Article] [PubMed]
    [Google Scholar]
  18. Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S et al. Avian influenza overview December 2022 - March 2023. EFSA J 2023; 21:e07917 [View Article] [PubMed]
    [Google Scholar]
  19. Koethe S, Ulrich L, Ulrich R, Amler S, Graaf A et al. Modulation of lethal HPAIV H5N8 clade 2.3.4.4B infection in AIV pre-exposed mallards. Emerg Microbes Infect 2020; 9:180–193 [View Article] [PubMed]
    [Google Scholar]
  20. Hoffmann B, Depner K, Schirrmeier H, Beer M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in A detection system for pestiviruses. J Virol Methods 2006; 136:200–209 [View Article] [PubMed]
    [Google Scholar]
  21. Fereidouni SR, Harder TC, Gaidet N, Ziller M, Hoffmann B et al. Saving resources: avian influenza surveillance using pooled swab samples and reduced reaction volumes in real-time RT-PCR. J Virol Methods 2012; 186:119–125 [View Article] [PubMed]
    [Google Scholar]
  22. Hassan KE, Ahrens AK, Ali A, El-Kady MF, Hafez HM et al. Improved subtyping of avian influenza viruses using an RT-qPCR-based low density array: “Riems influenza a typing array”, version 2 (RITA-2). Viruses 2022; 14:415 [View Article] [PubMed]
    [Google Scholar]
  23. Blaurock C, Pfaff F, Scheibner D, Hoffmann B, Fusaro A et al. Evidence for different virulence determinants and host response after infection of Turkeys and chickens with highly pathogenic H7N1 avian influenza virus. J Virol 2022; 96:e0099422 [View Article] [PubMed]
    [Google Scholar]
  24. King J, Harder T, Beer M, Pohlmann A. Rapid multiplex MinION nanopore sequencing workflow for Influenza A viruses. BMC Infect Dis 2020; 20:648 [View Article] [PubMed]
    [Google Scholar]
  25. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  26. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  28. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 2018; 4:vey016 [View Article] [PubMed]
    [Google Scholar]
  29. Camphuysen CJ, van Franeker JA. Ageing and sexing manual for stranded seabirds Technical documents 4.1 Handbook on Oil Impact Assessment version 1.0; 2007 https://eurowa.eu/web/wp-content/uploads/2022/05/ageing-manual.pdf
  30. Lewis NS, Banyard AC, Whittard E, Karibayev T, Al Kafagi T et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg Microbes Infect 2021; 10:148–151 [View Article] [PubMed]
    [Google Scholar]
  31. Camphuysen CJ, Ens D, Heg JB, Hulscher JB, Meer J et al. Oystercatcher Haematopus Ostralegus Winter Mortality in the Netherlands: The Effect of Severe Weather and Food Supply Ardea; 1996 pp 469–492
    [Google Scholar]
  32. Camphuysen CJ, Berrevoets CM, Cremers HJWM, Dekinga A, Dekker R et al. Mass mortality of common eiders (Somateria mollissima) in the Dutch Wadden Sea, winter 1999/2000: starvation in a commercially exploited wetland of international importance. Biol Conserv 2002; 106:303–317 [View Article]
    [Google Scholar]
  33. Schwemmer P, Hälterlein B, Geiter O, Günther K, Corman VM et al. Weather-related winter mortality of Eurasian Oystercatchers (Haematopus ostralegus) in the Northeastern Wadden Sea. Waterbirds 2014; 37:319–330 [View Article]
    [Google Scholar]
  34. Hälterlein B. Brutvogel-Bestände Im Schleswig-Holsteinischen Wattenmeer: Teilbericht Zum Forschungsvorhaben 108 02 085/01 Berlin: Umweltbundesamt, Berlin und 1998; 1998
    [Google Scholar]
  35. Strauch E, Jäckel C, Hammerl JA, Hennig V, Roschanski N et al. Draft genome sequences of Vibrio cholerae non-O1, non-O139 isolates from common tern chicks (Sterna hirundo) following a mass mortality event. Microbiol Resour Announc 2020; 9:e01053-20 [View Article] [PubMed]
    [Google Scholar]
  36. Kleyheeg E, Slaterus R, Bodewes R, Rijks JM, Spierenburg MAH et al. Deaths among wild birds during highly pathogenic avian influenza A(H5N8) virus outbreak, the Netherlands. Emerg Infect Dis 2017; 23:2050–2054 [View Article] [PubMed]
    [Google Scholar]
  37. Siebert U, Schwemmer P, Guse N, Harder T, Garthe S et al. Health status of seabirds and coastal birds found at the German North Sea coast. Acta Vet Scand 2012; 54:43 [View Article] [PubMed]
    [Google Scholar]
  38. Reperant LA, van de Bildt MWG, van Amerongen G, Buehler DM, Osterhaus ADME et al. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states. PLoS One 2011; 6:e27814 [View Article] [PubMed]
    [Google Scholar]
  39. Folmer EO, Olff H, Piersma T. How well do food distributions predict spatial distributions of shorebirds with different degrees of self-organization?. J Anim Ecol 2010; 79:747–756 [View Article] [PubMed]
    [Google Scholar]
  40. Ens BJ, Kersten M, Brenninkmeijer A, Hulscher JB. Territory quality, parental effort and reproductive success of Oystercatchers (Haematopus ostralegus). J Anim Ecol 1992; 61:703 [View Article]
    [Google Scholar]
  41. Schwemmer P, Weiel S, Garthe S. A fundamental study revisited: quantitative evidence for territory quality in oystercatchers (Haematopus ostralegus) using GPS data loggers. Ecol Evol 2017; 7:285–294 [View Article] [PubMed]
    [Google Scholar]
  42. Mander L, Nicholson I, Green RMW, Dodd SG, Forster RM et al. Individual, sexual and temporal variation in the winter home range sizes of GPS-tagged Eurasian Curlews Numenius arquata. Bird Study 2022; 69:39–52 [View Article]
    [Google Scholar]
  43. Leyrer J, Spaans B, Camara M, Piersma T. Small home ranges and high site fidelity in red knots (Calidris c. canutus) wintering on the Banc d’Arguin, Mauritania. J Ornithol 2006; 147:376–384 [View Article]
    [Google Scholar]
  44. Bijleveld AI, van Maarseveen F, Denissen B, Dekinga A, Penning E et al. WATLAS: high-throughput and real-time tracking of many small birds in the Dutch Wadden Sea. Anim Biotelemetry 2022; 10: [View Article]
    [Google Scholar]
  45. Frederick P. Wading birds in the marine environment. In Schreiber E, Burger J. eds Biology of Marine Birds CRC Press; 2001 pp 617–655 [View Article]
    [Google Scholar]
  46. Pohlmann A, Stejskal O, King J, Bouwhuis S, Packmor F et al. Mass mortality among colony-breeding seabirds in the German Wadden Sea in 2022 due to distinct genotypes of HPAIV H5N1 clade 2.3.4.4b. J Gen Virol 2023; 104: [View Article] [PubMed]
    [Google Scholar]
  47. Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ et al. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological “hot spot” for influenza viruses. Proc Biol Sci 2010; 277:3373–3379 [View Article] [PubMed]
    [Google Scholar]
  48. Rijks JM, Leopold MF, Kühn S, In’t Veld R, Schenk F et al. Mass mortality caused by highly pathogenic influenza A(H5N1) virus in Sandwich Terns, the Netherlands, 2022. Emerg Infect Dis 2022; 28:2538–2542 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.002003
Loading
/content/journal/jgv/10.1099/jgv.0.002003
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error