1887

Abstract

Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist’s molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.

Keyword(s): nanobodies and viruses
Funding
This study was supported by the:
  • Stiftelsen Clas Groschinskys Minnesfond
    • Principle Award Recipient: LeoHanke
  • David och Astrid Hageléns Stiftelse
    • Principle Award Recipient: LeoHanke
  • Horizon 2020 (Award 101003653)
    • Principle Award Recipient: GeraldM McInerney
  • Vetenskapsrådet (Award 2018-03843)
    • Principle Award Recipient: GeraldM McInerney
  • Jonas Söderquist
    • Principle Award Recipient: LeoHanke
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001731
2022-05-17
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/103/5/jgv001731.html?itemId=/content/journal/jgv/10.1099/jgv.0.001731&mimeType=html&fmt=ahah

References

  1. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363:446–448 [View Article]
    [Google Scholar]
  2. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013; 82:775–797 [View Article]
    [Google Scholar]
  3. Virant D, Traenkle B, Maier J, Kaiser PD, Bodenhöfer M et al. A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging. Nat Commun 2018; 9:1–14 [View Article]
    [Google Scholar]
  4. Ling J, Cheloha RW, McCaul N, Sun ZYJ, Wagner G et al. A nanobody that recognizes a 14-residue peptide epitope in the E2 ubiquitin-conjugating enzyme UBC6e modulates its activity. Mol Immunol 2019; 114:513–523 [View Article]
    [Google Scholar]
  5. Churchill ME, Stura EA, Pinilla C, Appel JR, Houghten RA et al. Crystal structure of a peptide complex of anti-influenza peptide antibody Fab 26/9. Comparison of two different antibodies bound to the same peptide antigen. J Mol Biol 1994; 241:534–556 [View Article]
    [Google Scholar]
  6. De Genst E, Silence K, Decanniere K, Conrath K, Loris R et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proceedings of the National Academy of Sciences 2006; 103:4586–4591 [View Article] [PubMed]
    [Google Scholar]
  7. Desmyter A, Spinelli S, Payan F, Lauwereys M, Wyns L et al. Three camelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition and versatility of binding topology. J Biol Chem 2002; 277:23645–23650 [View Article]
    [Google Scholar]
  8. Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L et al. Efficient Targeting of Conserved Cryptic Epitopes of Infectious Agents by Single Domain Antibodies. Journal of Biological Chemistry 2004; 279:1256–1261 [View Article] [PubMed]
    [Google Scholar]
  9. Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. ELife 2018; 7: [View Article] [PubMed]
    [Google Scholar]
  10. Ashour J, Schmidt FI, Hanke L, Cragnolini J, Cavallari M et al. Intracellular Expression of Camelid Single-Domain Antibodies Specific for Influenza Virus Nucleoprotein Uncovers Distinct Features of Its Nuclear Localization. J Virol 2015; 89:2792–2800 [View Article] [PubMed]
    [Google Scholar]
  11. Schmidt FI, Hanke L, Morin B, Brewer R, Brusic V et al. Phenotypic lentivirus screens to identify functional single domain antibodies. Nat Microbiol 2016; 1:16080 [View Article] [PubMed]
    [Google Scholar]
  12. Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun 2020; 11:4420 [View Article] [PubMed]
    [Google Scholar]
  13. Ibañez LI, De Filette M, Hultberg A, Verrips T, Temperton N et al. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis 2011; 203:1063–1072 [View Article] [PubMed]
    [Google Scholar]
  14. Hanke L, Das H, Sheward DJ, Perez Vidakovics L, Urgard E et al. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes sars-cov-2 in vivo. BioRxiv 2021
    [Google Scholar]
  15. Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep 2020; 10:22370 [View Article] [PubMed]
    [Google Scholar]
  16. Kato Y, Abbott RK, Freeman BL, Haupt S, Groschel B et al. Multifaceted Effects of Antigen Valency on B Cell Response Composition and Differentiation In Vivo. Immunity 2020; 53:548–563 [View Article] [PubMed]
    [Google Scholar]
  17. Rasmussen SGF, Choi H-J, Fung JJ, Pardon E, Casarosa P et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 2011; 469:175–180 [View Article] [PubMed]
    [Google Scholar]
  18. Eden T, Menzel S, Wesolowski J, Bergmann P, Nissen M et al. A cDNA Immunization Strategy to Generate Nanobodies against Membrane Proteins in Native Conformation. Front Immunol 2017; 8:1989 [View Article] [PubMed]
    [Google Scholar]
  19. Flemming A. Vaccines: Self-amplifying RNA in lipid nanoparticles: a next-generation vaccine?. Nat Rev Drug Discov 2012; 11:748–749 [View Article] [PubMed]
    [Google Scholar]
  20. Szurgot I, Hanke L, Sheward DJ, Vidakovics LP, Murrell B et al. DNA-launched RNA replicon vaccines induce potent anti-SARS-CoV-2 immune responses in mice. Sci Rep 2021; 11:3125 [View Article] [PubMed]
    [Google Scholar]
  21. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17:261–279 [View Article] [PubMed]
    [Google Scholar]
  22. Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol 2020; 27:846–854 [View Article] [PubMed]
    [Google Scholar]
  23. Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat Commun 2020; 11:1–11 [View Article] [PubMed]
    [Google Scholar]
  24. Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A et al. A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 2014; 9:674–693 [View Article] [PubMed]
    [Google Scholar]
  25. Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods 2007; 324:13–25 [View Article] [PubMed]
    [Google Scholar]
  26. Chen X, Gentili M, Hacohen N, Regev A. A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies. Nat Commun 2021; 12:1–14 [View Article]
    [Google Scholar]
  27. Zimmermann I, Egloff P, Hutter CAJ, Kuhn BT, Bräuer P et al. Generation of synthetic nanobodies against delicate proteins. Nat Protoc 2020; 15:1707–1741 [View Article] [PubMed]
    [Google Scholar]
  28. Matz J, Hérate C, Bouchet J, Dusetti N, Gayet O et al. Selection of intracellular single-domain antibodies targeting the HIV-1 Vpr protein by cytoplasmic yeast two-hybrid system. PLoS One 2014; 9:e113729 [View Article] [PubMed]
    [Google Scholar]
  29. Gao X, Hu X, Tong L, Liu D, Chang X et al. Construction of a camelid VHH yeast two-hybrid library and the selection of VHH against haemagglutinin-neuraminidase protein of the Newcastle disease virus. BMC Vet Res 2016; 12:39 [View Article] [PubMed]
    [Google Scholar]
  30. Liu Z-H, Lei K-X, Han G-W, Xu H-L, He F. Novel Lentivirus-Based Method for Rapid Selection of Inhibitory Nanobody against PRRSV. Viruses 2020; 12:229 [View Article]
    [Google Scholar]
  31. Hanke L, Sheward DJ, Pankow A, Vidakovics LP, Karl V et al. Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralising sars-cov-2 nanobodies. BioRxiv 2021 [View Article]
    [Google Scholar]
  32. Fabricius V, Lefèbre J, Geertsema H, Marino SF, Ewers H. Rapid and efficient C-terminal labeling of nanobodies for DNA-PAINT. J Phys D: Appl Phys 2018; 51:474005 [View Article]
    [Google Scholar]
  33. Beghein E, Gettemans J. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration. Front Immunol 2017; 8:771 [View Article] [PubMed]
    [Google Scholar]
  34. Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307–15327 [View Article] [PubMed]
    [Google Scholar]
  35. Yang S, Yuan L, Shang Y, Wu J, Liu X et al. Selection and Characterization of CSFV-Specific Single-Domain Antibodies and Their Application along with Immunomagnetic Nanobeads and Quantum Dots. BioMed Research International 2020; 2020:1–11 [View Article]
    [Google Scholar]
  36. Sherwood LJ, Hayhurst A. Periplasmic Nanobody-APEX2 Fusions Enable Facile Visualization of Ebola, Marburg, and Mĕnglà virus Nucleoproteins, Alluding to Similar Antigenic Landscapes among Marburgvirus and Dianlovirus. Viruses 2019; 11:E364 [View Article] [PubMed]
    [Google Scholar]
  37. de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278 [View Article] [PubMed]
    [Google Scholar]
  38. Mikhaylova M, Cloin BMC, Finan K, van den Berg R, Teeuw J et al. Resolving bundled microtubules using anti-tubulin nanobodies. Nat Commun 2015; 6:7933 [View Article] [PubMed]
    [Google Scholar]
  39. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 2012; 9:582–584 [View Article] [PubMed]
    [Google Scholar]
  40. Fang T, Lu X, Berger D, Gmeiner C, Cho J et al. Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat Methods 2018; 15:1029–1032 [View Article] [PubMed]
    [Google Scholar]
  41. He X, Wang S-M, Fang Yin Z, Zhao M-M, Li N et al. Identification of a nanobody specific to human pulmonary surfactant protein A. Sci Rep 2017; 7:1412 [View Article] [PubMed]
    [Google Scholar]
  42. Ariotti N, Rae J, Giles N, Martel N, Sierecki E et al. Ultrastructural localisation of protein interactions using conditionally stable nanobodies. PLoS Biol 2018; 16:e2005473 [View Article] [PubMed]
    [Google Scholar]
  43. Tang JC, Drokhlyansky E, Etemad B, Rudolph S, Guo B et al. Detection and manipulation of live antigen-expressing cells using conditionally stable nanobodies. Elife 2016; 5:e15312 [View Article] [PubMed]
    [Google Scholar]
  44. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 2006; 3:887–889 [View Article] [PubMed]
    [Google Scholar]
  45. Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 2019; 573:287–290 [View Article] [PubMed]
    [Google Scholar]
  46. Götzke H, Kilisch M, Martínez-Carranza M, Sograte-Idrissi S, Rajavel A et al. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat Commun 2019; 10:1–12 [View Article]
    [Google Scholar]
  47. Boersma S, Khuperkar D, Verhagen BMP, Sonneveld S, Grimm JB et al. Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding. Cell 2019; 178:458–472 [View Article] [PubMed]
    [Google Scholar]
  48. Traenkle B, Segan S, Fagbadebo FO, Kaiser PD, Rothbauer U. A novel epitope tagging system to visualize and monitor antigens in live cells with chromobodies. Sci Rep 2020; 10:14267 [View Article] [PubMed]
    [Google Scholar]
  49. Cao J, Zhong N, Wang G, Wang M, Zhang B et al. Nanobody-based sandwich reporter system for living cell sensing influenza A virus infection. Sci Rep 2019; 9:15899 [View Article] [PubMed]
    [Google Scholar]
  50. Vercruysse T, Pardon E, Vanstreels E, Steyaert J, Daelemans D. An intrabody based on a llama single-domain antibody targeting the N-terminal alpha-helical multimerization domain of HIV-1 rev prevents viral production. J Biol Chem 2010; 285:21768–21780 [View Article] [PubMed]
    [Google Scholar]
  51. Bouchet J, Basmaciogullari SE, Chrobak P, Stolp B, Bouchard N et al. Inhibition of the Nef regulatory protein of HIV-1 by a single-domain antibody. Blood 2011; 117:3559–3568 [View Article] [PubMed]
    [Google Scholar]
  52. Lülf S, Matz J, Rouyez M-C, Järviluoma A, Saksela K et al. Structural basis for the inhibition of HIV-1 Nef by a high-affinity binding single-domain antibody. Retrovirology 2014; 11:24 [View Article] [PubMed]
    [Google Scholar]
  53. Bouchet J, Hérate C, Guenzel CA, Vérollet C, Järviluoma A et al. Single-domain antibody-SH3 fusions for efficient neutralization of HIV-1 Nef functions. J Virol 2012; 86:4856–4867 [View Article] [PubMed]
    [Google Scholar]
  54. Hanke L, Knockenhauer KE, Brewer RC, van Diest E, Schmidt FI et al. The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment. mBio 2016; 7:e01569-16 [View Article] [PubMed]
    [Google Scholar]
  55. Hanke L, Schmidt FI, Knockenhauer KE, Morin B, Whelan SP et al. Vesicular stomatitis virus N protein-specific single-domain antibody fragments inhibit replication. EMBO Rep 2017; 18:1027–1037 [View Article] [PubMed]
    [Google Scholar]
  56. Caussinus E, Kanca O, Affolter M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol 2011; 19:117–121 [View Article]
    [Google Scholar]
  57. Wiuf A, Kristensen LH, Kristensen O, Dorosz J, Jensen J et al. Structure and binding properties of a cameloid nanobody raised against KDM5B. Acta Crystallogr F Struct Biol Commun 2015; 71:1235–1241 [View Article] [PubMed]
    [Google Scholar]
  58. Korotkov KV, Pardon E, Steyaert J, Hol WGJ. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 2009; 17:255–265 [View Article] [PubMed]
    [Google Scholar]
  59. Chang Y-N, Shaik F, Neldner Y, Geertsma E. Production, Purification and Crystallization of a Prokaryotic SLC26 Homolog for Structural Studies. BIO-PROTOCOL 2017; 7: [View Article]
    [Google Scholar]
  60. Park YJ, Pardon E, Wu M, Steyaert J, Hol WGJ. Crystal structure of a heterodimer of editosome interaction proteins in complex with two copies of a cross-reacting nanobody. Nucleic Acids Res 2012; 40:1828–1840 [View Article] [PubMed]
    [Google Scholar]
  61. Löw C, Yau YH, Pardon E, Jegerschöld C, Wåhlin L et al. Nanobody mediated crystallization of an archeal mechanosensitive channel. PLoS One 2013; 8:e77984 [View Article] [PubMed]
    [Google Scholar]
  62. Tsai Y-C, Johansson H, Dixon D, Martin S, Chung C-W et al. Single-Domain Antibodies as Crystallization Chaperones to Enable Structure-Based Inhibitor Development for RBR E3 Ubiquitin Ligases. Cell Chem Biol 2020; 27:83–93 [View Article] [PubMed]
    [Google Scholar]
  63. Garza JA, Taylor AB, Sherwood LJ, Hart PJ, Hayhurst A. Unveiling a Drift Resistant Cryptotope within Marburgvirus Nucleoprotein Recognized by Llama Single-Domain Antibodies. Front Immunol 2017; 8:1234 [View Article] [PubMed]
    [Google Scholar]
  64. Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 2020; 181:1004–1015 [View Article] [PubMed]
    [Google Scholar]
  65. Koenig P-A, Das H, Liu H, Kümmerer BM, Gohr FN et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 2021; 371:eabe6230 [View Article] [PubMed]
    [Google Scholar]
  66. Uchański T, Masiulis S, Fischer B, Kalichuk V, López-Sánchez U et al. Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nat Methods 2021; 18:60–68 [View Article] [PubMed]
    [Google Scholar]
  67. Wu X, Rapoport TA. Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proc Natl Acad Sci U S A 2021; 118:e2115001118 [View Article] [PubMed]
    [Google Scholar]
  68. Wagner TR, Ostertag E, Kaiser PD, Gramlich M, Ruetalo N et al. NeutrobodyPlex-monitoring SARS-CoV-2 neutralizing immune responses using nanobodies. EMBO Rep 2021; 22:e52325 [View Article] [PubMed]
    [Google Scholar]
  69. Du T, Zhu G, Wu X, Fang J, Zhou EM. Biotinylated Single-Domain Antibody-Based Blocking ELISA for Detection of Antibodies Against Swine Influenza Virus. Int J Nanomedicine 2019; 14:9337–9349 [View Article] [PubMed]
    [Google Scholar]
  70. Gelkop S, Sobarzo A, Brangel P, Vincke C, Romão E et al. The Development and Validation of a Novel Nanobody-Based Competitive ELISA for the Detection of Foot and Mouth Disease 3ABC Antibodies in Cattle. Front Vet Sci 2018; 5:250 [View Article] [PubMed]
    [Google Scholar]
  71. Mu Y, Jia C, Zheng X, Zhu H, Zhang X et al. Correction to: A nanobody-horseradish peroxidase fusion protein-based competitive ELISA for rapid detection of antibodies against porcine circovirus type 2. J Nanobiotechnology 2021; 19:66 [View Article] [PubMed]
    [Google Scholar]
  72. Doerflinger SY, Tabatabai J, Schnitzler P, Farah C, Rameil S et al. Development of a Nanobody-Based Lateral Flow Immunoassay for Detection of Human Norovirus. mSphere 2016; 1:e00219–16 [View Article] [PubMed]
    [Google Scholar]
  73. Lu Q, Li X, Zhao J, Zhu J, Luo Y et al. Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays. J Nanobiotechnol 2020; 18:7 [View Article] [PubMed]
    [Google Scholar]
  74. Anderson GP, Liu JL, Shriver-Lake LC, Goldman ER. Selection and Characterization of Single-Domain Antibodies for Detection of Lassa Nucleoprotein. Antibodies 2020; 9:71 [View Article] [PubMed]
    [Google Scholar]
  75. Zhu M, Gong X, Hu Y, Ou W, Wan Y. Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1. J Transl Med 2014; 12:352 [View Article] [PubMed]
    [Google Scholar]
  76. Dash L, Subramaniam S, Khulape SA, Prusty BR, Pargai K et al. Development and Utilization of VHH Antibodies Derived from Camelus Dromedarius Against Foot-and-Mouth Disease Virus. Animal Biotechnology 2018; 30:57–62 [View Article] [PubMed]
    [Google Scholar]
  77. Pillay TS, Muyldermans S. Application of Single-Domain Antibodies (“Nanobodies”) to Laboratory Diagnosis. Ann Lab Med 2021; 41:549–558 [View Article] [PubMed]
    [Google Scholar]
  78. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 2009; 284:3273–3284 [View Article] [PubMed]
    [Google Scholar]
  79. Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR et al. Noninvasive imaging of immune responses. Proc Natl Acad Sci U S A 2015; 112:6146–6151 [View Article] [PubMed]
    [Google Scholar]
  80. Jovčevska I, Muyldermans S. The Therapeutic Potential of Nanobodies. BioDrugs 2020; 34:11–26 [View Article] [PubMed]
    [Google Scholar]
  81. Berland L, Kim L, Abousaway O, Mines A, Mishra S et al. Nanobodies for Medical Imaging: About Ready for Prime Time?. Biomolecules 2021; 11:637 [View Article] [PubMed]
    [Google Scholar]
  82. Vugmeyster Y, Entrican CA, Joyce AP, Lawrence-Henderson RF, Leary BA et al. Pharmacokinetic, Biodistribution, and Biophysical Profiles of TNF Nanobodies Conjugated to Linear or Branched Poly(ethylene glycol). Bioconjugate Chem 2012; 23:1452–1462 [View Article] [PubMed]
    [Google Scholar]
  83. Terryn S, Francart A, Lamoral S, Hultberg A, Rommelaere H et al. Protective Effect of Different Anti-Rabies Virus VHH Constructs against Rabies Disease in Mice. PLoS ONE 2014; 9:e109367 [View Article] [PubMed]
    [Google Scholar]
  84. Pymm P, Adair A, Chan L-J, Cooney JP, Mordant FL et al. Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proc Natl Acad Sci U S A 2021; 118:e2101918118 [View Article] [PubMed]
    [Google Scholar]
  85. Laursen NS, Friesen RHE, Zhu X, Jongeneelen M, Blokland S et al. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science 2018; 362:598–602 [View Article]
    [Google Scholar]
  86. Cardoso FM, Ibañez LI, Van den Hoecke S, De Baets S, Smet A et al. Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 2014; 88:8278–8296 [View Article] [PubMed]
    [Google Scholar]
  87. Hultberg A, Temperton NJ, Rosseels V, Koenders M, Gonzalez-Pajuelo M et al. Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules. PLoS One 2011; 6:1–12 [View Article]
    [Google Scholar]
  88. Wichgers Schreur PJ, van de Water S, Harmsen M, Bermúdez-Méndez E, Drabek D et al. Multimeric single-domain antibody complexes protect against bunyavirus infections. Elife 2020; 9:e52716 [View Article] [PubMed]
    [Google Scholar]
  89. Moliner-Morro A, J Sheward D, Karl V, Perez Vidakovics L, Murrell B et al. Picomolar SARS-CoV-2 Neutralization Using Multi-Arm PEG Nanobody Constructs. Biomolecules 2020; 10:1–11 [View Article] [PubMed]
    [Google Scholar]
  90. Rujas E, Kucharska I, Tan YZ, Benlekbir S, Cui H et al. Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nat Commun 2021; 12:1–12 [View Article] [PubMed]
    [Google Scholar]
  91. Forsman A, Beirnaert E, Aasa-Chapman MMI, Hoorelbeke B, Hijazi K et al. Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120. J Virol 2008; 82:12069–12081 [View Article] [PubMed]
    [Google Scholar]
  92. McCoy LE, Quigley AF, Strokappe NM, Bulmer-Thomas B, Seaman MS et al. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. J Exp Med 2012; 209:1091–1103 [View Article] [PubMed]
    [Google Scholar]
  93. Tutykhina IL, Sedova ES, Gribova IY, Ivanova TI, Vasilev LA et al. Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Antiviral Res 2013; 97:318–328 [View Article] [PubMed]
    [Google Scholar]
  94. Gaiotto T, Ramage W, Ball C, Risley P, Carnell GW et al. Nanobodies mapped to cross-reactive and divergent epitopes on A(H7N9) influenza hemagglutinin using yeast display. Sci Rep 2021; 11:3126 [View Article] [PubMed]
    [Google Scholar]
  95. Tillib SV, Ivanova TI, Vasilev LA, Rutovskaya MV, Saakyan SA et al. Formatted single-domain antibodies can protect mice against infection with influenza virus (H5N2). Antiviral Res 2013; 97:245–254 [View Article] [PubMed]
    [Google Scholar]
  96. Schepens B, Ibañez LI, De Baets S, Hultberg A, Bogaert P et al. Nanobodies® specific for respiratory syncytial virus fusion protein protect against infection by inhibition of fusion. J Infect Dis 2011; 204:1692–1701 [View Article] [PubMed]
    [Google Scholar]
  97. Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE et al. Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob Agents Chemother 2016; 60:6–13 [View Article] [PubMed]
    [Google Scholar]
  98. Garaicoechea L, Olichon A, Marcoppido G, Wigdorovitz A, Mozgovoj M et al. Llama-derived single-chain antibody fragments directed to rotavirus VP6 protein possess broad neutralizing activity in vitro and confer protection against diarrhea in mice. J Virol 2008; 82:9753–9764 [View Article] [PubMed]
    [Google Scholar]
  99. Koromyslova AD, Hansman GS. Nanobody binding to a conserved epitope promotes norovirus particle disassembly. J Virol 2015; 89:2718–2730 [View Article] [PubMed]
    [Google Scholar]
  100. Liu JL, Shriver-Lake LC, Zabetakis D, Anderson GP, Goldman ER. Selection and characterization of protective anti-chikungunya virus single domain antibodies. Mol Immunol 2019; 105:190–197 [View Article] [PubMed]
    [Google Scholar]
  101. Liu JL, Webb EM, Zabetakis D, Burke CW, Gardner CL et al. Stabilization of a Broadly Neutralizing Anti-Chikungunya Virus Single Domain Antibody. Front Med 2021; 8:12 [View Article]
    [Google Scholar]
  102. Wu Y, Li C, Xia S, Tian X, Kong Y et al. Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe 2020; 27:891–898 [View Article] [PubMed]
    [Google Scholar]
  103. Zhao G, He L, Sun S, Qiu H, Tai W et al. A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV. J Virol 2018; 92:837–855 [View Article] [PubMed]
    [Google Scholar]
  104. Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z et al. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 2020; 370:1479–1484 [View Article] [PubMed]
    [Google Scholar]
  105. Ye G, Gallant J, Zheng J, Massey C, Shi K et al. The development of nanosota-1 as anti-sars-cov-2 nanobody drug candidates. ELife 2021; 10:e64815 [View Article]
    [Google Scholar]
  106. Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 2020; 370:1473–1479 [View Article] [PubMed]
    [Google Scholar]
  107. Chi X, Liu X, Wang C, Zhang X, Li X et al. Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain. Nat Commun 2020; 11:1–7 [View Article]
    [Google Scholar]
  108. Wang S, Gao S, Li Y, Qian X, Luan J et al. Emerging Importance of Chemokine Receptor CXCR4 and Its Ligand in Liver Disease. Front Cell Dev Biol 2021; 9:2053 [View Article]
    [Google Scholar]
  109. Ullah TR. The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond. J Bone Oncol 2019; 17:100253 [View Article]
    [Google Scholar]
  110. Bobkov V, Zarca AM, Van Hout A, Arimont M, Doijen J et al. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem Pharmacol 2018; 158:413–424 [View Article] [PubMed]
    [Google Scholar]
  111. Van Hout A, Klarenbeek A, Bobkov V, Doijen J, Arimont M et al. CXCR4-targeting nanobodies differentially inhibit CXCR4 function and HIV entry. Biochem Pharmacol 2018; 158:402–412 [View Article]
    [Google Scholar]
  112. Jähnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci U S A 2010; 107:20565–20570 [View Article]
    [Google Scholar]
  113. Cunha-Santos C, Perdigao PRL, Martin F, Oliveira JG, Cardoso M et al. Inhibition of HIV replication through siRNA carried by CXCR4-targeted chimeric nanobody. Cell Mol Life Sci 2020; 77:2859–2870 [View Article] [PubMed]
    [Google Scholar]
  114. De Vlieger D, Hoffmann K, Van Molle I, Nerinckx W, Van Hoecke L et al. Selective Engagement of FcγRIV by a M2e-Specific Single Domain Antibody Construct Protects Against Influenza A Virus Infection. Front Immunol 2019; 10:2920 [View Article] [PubMed]
    [Google Scholar]
  115. De Groof TWM, Elder EG, Lim EY, Heukers R, Bergkamp ND et al. Targeting the latent human cytomegalovirus reservoir for T-cell-mediated killing with virus-specific nanobodies. Nat Commun 2021; 12:4436 [View Article] [PubMed]
    [Google Scholar]
  116. Sarker SA, Jäkel M, Sultana S, Alam NH, Bardhan PK et al. Anti-rotavirus protein reduces stool output in infants with diarrhea: a randomized placebo-controlled trial. Gastroenterology 2013; 145:740–748 [View Article] [PubMed]
    [Google Scholar]
  117. Maffey L, Vega CG, Miño S, Garaicoechea L, Parreño V. Anti-VP6 VHH: An Experimental Treatment for Rotavirus A-Associated Disease. PLoS One 2016; 11:e0162351 [View Article] [PubMed]
    [Google Scholar]
  118. Garaicoechea L, Aguilar A, Parra GI, Bok M, Sosnovtsev SV et al. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea. PLoS One 2015; 10:e0133665 [View Article] [PubMed]
    [Google Scholar]
  119. Sasou A, Yuki Y, Kurokawa S, Sato S, Goda Y et al. Development of Antibody-Fragment-Producing Rice for Neutralization of Human Norovirus. Front Plant Sci 2021; 12:639953 [View Article] [PubMed]
    [Google Scholar]
  120. Larios Mora A, Detalle L, Gallup JM, Van Geelen A, Stohr T et al. Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs. MAbs 2018; 10:778–795 [View Article] [PubMed]
    [Google Scholar]
  121. Cunningham S, Piedra PA, Martinon-Torres F, Szymanski H, Brackeva B et al. Nebulised ALX-0171 for respiratory syncytial virus lower respiratory tract infection in hospitalised children: a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 2021; 9:21–32 [View Article] [PubMed]
    [Google Scholar]
  122. Schepens B, van Schie L, Nerinckx W, Roose K, Van Breedam W et al. An affinity-enhanced, broadly neutralizing heavy chain-only antibody protects against SARS-CoV-2 infection in animal models. Sci Transl Med 2021; 13:eabi7826 [View Article] [PubMed]
    [Google Scholar]
  123. Eichhoff AM, Börner K, Albrecht B, Schäfer W, Baum N et al. Nanobody-Enhanced Targeting of AAV Gene Therapy Vectors. Mol Ther Methods Clin Dev 2019; 15:211–220 [View Article] [PubMed]
    [Google Scholar]
  124. Xu J, Xu K, Jung S, Conte A, Lieberman J et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature 2021; 595:278–282 [View Article] [PubMed]
    [Google Scholar]
  125. Li T, Huang M, Xiao H, Zhang G, Ding J et al. Selection and characterization of specific nanobody against bovine virus diarrhea virus (BVDV) E2 protein. PLoS One 2017; 12:e0178469 [View Article] [PubMed]
    [Google Scholar]
  126. Duan H, Ma Z, Xu L, Zhang A, Li Z et al. A novel intracellularly expressed NS5B-specific nanobody suppresses bovine viral diarrhea virus replication. Vet Microbiol 2020; 240:108449 [View Article] [PubMed]
    [Google Scholar]
  127. Shriver-Lake LC, Liu JL, Zabetakis D, Sugiharto VA, Lee C-R et al. Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Sci Rep 2018; 8:18086 [View Article]
    [Google Scholar]
  128. Fatima A, Wang H, Kang K, Xia L, Wang Y et al. Development of VHH Antibodies against Dengue Virus Type 2 NS1 and Comparison with Monoclonal Antibodies for Use in Immunological Diagnosis. PLoS ONE 2014; 9:e95263 [View Article]
    [Google Scholar]
  129. Sherwood LJ, Taylor AB, Hart PJ, Hayhurst A. Paratope Duality and Gullying are Among the Atypical Recognition Mechanisms Used by a Trio of Nanobodies to Differentiate Ebolavirus Nucleoproteins. J Mol Biol 2019; 431:4848–4867 [View Article]
    [Google Scholar]
  130. Serruys B, Van Houtte F, Farhoudi-Moghadam A, Leroux-Roels G, Vanlandschoot P. Production, characterization and in vitro testing of HBcAg-specific VHH intrabodies. J Gen Virol 2010; 91:643–652 [View Article]
    [Google Scholar]
  131. Glab-Ampai K, Malik AA, Chulanetra M, Thanongsaksrikul J, Thueng-In K et al. Inhibition of HCV replication by humanized-single domain transbodies to NS4B. Biochem Biophys Res Commun 2016; 476:654–664 [View Article]
    [Google Scholar]
  132. Phalaphol A, Thueng-in K, Thanongsaksrikul J, Poungpair O, Bangphoomi K et al. Humanized-VH/VHH that inhibit HCV replication by interfering with the virus helicase activity. Journal of Virological Methods 2013; 194:289–299 [View Article] [PubMed]
    [Google Scholar]
  133. Jittavisutthikul S, Thanongsaksrikul J, Thueng-in K, Chulanetra M, Srimanote P et al. Humanized-VHH Transbodies that Inhibit HCV Protease and Replication. Viruses 2015; 7:2030–2056 [View Article] [PubMed]
    [Google Scholar]
  134. Thueng-in K, Thanongsaksrikul J, Srimanote P, Bangphoomi K, Poungpair O et al. Cell Penetrable Humanized-VH/VHH That Inhibit RNA Dependent RNA Polymerase (NS5B) of HCV. PLoS ONE 2012; 7:e49254 [View Article] [PubMed]
    [Google Scholar]
  135. Hinz A, Lutje Hulsik D, Forsman A, Koh WW-L, Belrhali H et al. Crystal Structure of the Neutralizing Llama VHH D7 and Its Mode of HIV-1 gp120 Interaction. PLoS ONE 2010; 5:e10482 [View Article] [PubMed]
    [Google Scholar]
  136. McCoy LE, Rutten L, Frampton D, Anderson I, Granger L et al. Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1. PLoS Pathog 2014; 10:e1004552 [View Article] [PubMed]
    [Google Scholar]
  137. Strokappe NM, Hock M, Rutten L, Mccoy LE, Back JW et al. Super Potent Bispecific Llama VHH Antibodies Neutralize HIV via a Combination of gp41 and gp120 Epitopes. Antibodies (Basel) 2019; 8:38 [View Article] [PubMed]
    [Google Scholar]
  138. Liu L, Wang W, Matz J, Ye C, Bracq L et al. The Glycosylphosphatidylinositol-Anchored Variable Region of Llama Heavy Chain-Only Antibody JM4 Efficiently Blocks both Cell-Free and T Cell-T Cell Transmission of Human Immunodeficiency Virus Type 1. J Virol 2016; 90:10642–10659 [View Article] [PubMed]
    [Google Scholar]
  139. Wang SX, Michiels J, Ariën KK, New R, Vanham G et al. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine. Nanoscale Res Lett 2016; 11:350 [View Article] [PubMed]
    [Google Scholar]
  140. Togtema M, Hussack G, Dayer G, Teghtmeyer MR, Raphael S et al. Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein. Int J Mol Sci 2019; 20:E2088 [View Article] [PubMed]
    [Google Scholar]
  141. Geoghegan EM, Zhang H, Desai PJ, Biragyn A, Markham RB. Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2. Antimicrob Agents Chemother 2015; 59:527–535 [View Article] [PubMed]
    [Google Scholar]
  142. Van Hoecke L, Verbeke R, De Vlieger D, Dewitte H, Roose K et al. mRNA Encoding a Bispecific Single Domain Antibody Construct Protects against Influenza A Virus Infection in Mice. Mol Ther Nucleic Acids 2020; 20:777–787 [View Article] [PubMed]
    [Google Scholar]
  143. Wei G, Meng W, Guo H, Pan W, Liu J et al. Potent Neutralization of Influenza A Virus by a Single-Domain Antibody Blocking M2 Ion Channel Protein. PLoS ONE 2011; 6:e28309 [View Article]
    [Google Scholar]
  144. Linero F, Sepúlveda C, Christopoulou I, Hulpiau P, Scolaro L et al. Neutralization of Junín virus by single domain antibodies targeted against the nucleoprotein. Sci Rep 2018; 8:11451 [View Article] [PubMed]
    [Google Scholar]
  145. Sherwood LJ, Osborn LE, Carrion R, Patterson JL, Hayhurst A. Rapid assembly of sensitive antigen-capture assays for Marburg virus, using in vitro selection of llama single-domain antibodies, at biosafety level 4. J Infect Dis 2007; 196 Suppl 2:S213–9 [View Article] [PubMed]
    [Google Scholar]
  146. Stalin Raj V, Okba NMA, Gutierrez-Alvarez J, Drabek D, van Dieren B et al. Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. Sci Adv 2018; 4:eaas9667 [View Article] [PubMed]
    [Google Scholar]
  147. Ji P, Zhu J, Li X, Fan W, Liu Q et al. Fenobody and RANbody-based sandwich enzyme-linked immunosorbent assay to detect Newcastle disease virus. J Nanobiotechnology 2020; 18:44 [View Article] [PubMed]
    [Google Scholar]
  148. Yuki Y, Kurokawa S, Sato S, Sasou A, Matsumoto N et al. A Heterodimeric Antibody Fragment for Passive Immunotherapy Against Norovirus Infection. J Infect Dis 2020; 222:470–478 [View Article] [PubMed]
    [Google Scholar]
  149. Ma Z, Wang T, Li Z, Guo X, Tian Y et al. A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus. J Nanobiotechnology 2019; 17:96 [View Article] [PubMed]
    [Google Scholar]
  150. Bao F, Wang L, Zhao X, Lu T, Na AM et al. Preparation and characterization of a single-domain antibody specific for the porcine epidemic diarrhea virus spike protein. AMB Express 2019; 9:104 [View Article] [PubMed]
    [Google Scholar]
  151. Yang S, Li L, Yin S, Shang Y, Khan MUZ et al. Single-domain antibodies as promising experimental tools in imaging and isolation of porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2018; 102:8931–8942 [View Article] [PubMed]
    [Google Scholar]
  152. Liu D, Li L, Cao X, Wu J, Du G et al. Selection and identification of single-domain antibody against Peste des Petits Ruminants virus. J Vet Sci 2021; 22:1–13 [View Article] [PubMed]
    [Google Scholar]
  153. Thys B, Schotte L, Muyldermans S, Wernery U, Hassanzadeh-Ghassabeh G et al. In vitro antiviral activity of single domain antibody fragments against poliovirus. Antiviral Res 2010; 87:257–264 [View Article]
    [Google Scholar]
  154. Schotte L, Strauss M, Thys B, Halewyck H, Filman DJ et al. Mechanism of Action and Capsid-Stabilizing Properties of VHHs with an In Vitro Antipolioviral Activity. Journal of Virology 2014; 88:4403–4413 [View Article] [PubMed]
    [Google Scholar]
  155. Strauss M, Schotte L, Thys B, Filman DJ, Hogle JM et al. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site. J Virol 2016; 90:3496–3505 [View Article] [PubMed]
    [Google Scholar]
  156. Boruah BM, Liu D, Ye D, Gu T, Jiang C et al. Single Domain Antibody Multimers Confer Protection against Rabies Infection. PLoS ONE 2013; 8:e71383 [View Article] [PubMed]
    [Google Scholar]
  157. Terryn S, Francart A, Rommelaere H, Stortelers C, Van Gucht S. Post-exposure Treatment with Anti-rabies VHH and Vaccine Significantly Improves Protection of Mice from Lethal Rabies Infection. PLoS Negl Trop Dis 2016; 10:1–15 [View Article] [PubMed]
    [Google Scholar]
  158. Broadbent L, Parke HG, Ferguson LJ, Millar A, Shields MD et al. Comparative Therapeutic Potential of ALX-0171 and Palivizumab against Respiratory Syncytial Virus Clinical Isolate Infection of Well-Differentiated Primary Pediatric Bronchial Epithelial Cell Cultures. Antimicrob Agents Chemother 2020; 64:e02034-19 [View Article] [PubMed]
    [Google Scholar]
  159. Vega CG, Bok M, Vlasova AN, Chattha KS, Gómez-Sebastián S et al. Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea. PLoS Pathog 2013; 9:e1003334 [View Article] [PubMed]
    [Google Scholar]
  160. Aladin F, Einerhand AWC, Bouma J, Bezemer S, Hermans P et al. In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments. PLoS One 2012; 7:e32949 [View Article] [PubMed]
    [Google Scholar]
  161. Dong J, Huang B, Wang B, Titong A, Gallolu Kankanamalage S et al. Development of humanized tri-specific nanobodies with potent neutralization for SARS-CoV-2. Sci Rep 2020; 10:17806 [View Article] [PubMed]
    [Google Scholar]
  162. Zupancic JM, Schardt JS, Desai AA, Makowski EK, Smith MD et al. Engineered Multivalent Nanobodies Potently and Broadly Neutralize SARS‐CoV‐2 Variants. Adv Therap 2021; 4:2100099 [View Article] [PubMed]
    [Google Scholar]
  163. Wu X, Li Y, Huang B, Ma X, Zhu L et al. A single-domain antibody inhibits SFTSV and mitigates virus-induced pathogenesis in vivo. JCI Insight 2020; 5: [View Article] [PubMed]
    [Google Scholar]
  164. Liu J, Shriver-Lake L, Zabetakis D, Goldman E, Anderson G. Selection of Single-Domain Antibodies towards Western Equine Encephalitis Virus. Antibodies 2018; 7:44 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.001731
Loading
/content/journal/jgv/10.1099/jgv.0.001731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error