1887

Abstract

The vine mealybug, (Signoret, 1875), is the most important insect pest in growing areas of the grapevine L. in several countries, including Mexico. In Mexico, Baja California (B.C.) is the region with the highest production of L. grapes for industrial purposes. Recently, the diversity of viruses infecting insects only (insect-specific viruses) has been broadly explored to elucidate further ecological viral–host interactions in many insect species, which in some cases has resulted in the application of virus-based biological control agents for insect pests. However, a survey of the virome has not been done yet. In the present study, we pooled individuals collected through different vineyards of Ensenada, B.C., Mexico and analysed them by meta-transcriptomics. Novel nearly complete genomes of five RNA viruses were retrieved. These viruses were related to the and families, and to the and orders. A new isolate belonging to the family was also found. Phylogenetic analyses showed that these putative viral genomes group with viruses having hemipteran (including a mealybug species) or other insect hosts, or with viruses associated with insects. Our results suggest that the identified novel RNA viruses could be insect-specific viruses of . This work is the first insight into the virome; it guarantees further studies aimed to characterize those viruses with potential for application in biological control of this economically important insect.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001717
2022-03-08
2024-03-28
Loading full text...

Full text loading...

References

  1. García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y et al. ScaleNet: a literature-based model of scale insect biology and systematics. Database (Oxford) 2016; 2016:bav118 [View Article] [PubMed]
    [Google Scholar]
  2. Cocco A, Pacheco da Silva VC, Benelli G, Botton M, Lucchi A et al. Sustainable management of the vine mealybug in organic vineyards. J Pest Sci 2020; 94:153–185 [View Article]
    [Google Scholar]
  3. Servicio de Información Agroalimentaria y Pesquera (SIAP). Panorama agroalimentario Secretaria de Agricultura y Desarrollo Social; 2020 https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2020/Atlas-Agroalimentario-2020
  4. Fu Castillo AA, Valenzuela Solano C. Recomendaciones para la aplicación de insecticidas en el riego para control del piojo harinoso de la vid. Centro de Investigación Regional Noroeste. Sitio Experimental Costa de Ensenada. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Secretaria de Agricultura y Desarrollo Social. Desplegable para productores no. 89.; 2019
  5. Fu Castillo AA, Valenzuela Solano C. Manejo integrado del piojo harinoso de la vid en la costa de Ensenada, Baja California.Centro de Investigación Regional Noroeste. Sitio Experimental Costa de Ensenada. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Secretaria de Agricultura y Desarrollo Social. Desplegable para productores no. 90.; 2019
  6. Almeida RPP, Daane KM, Bell VA, Blaisdell GK, Cooper ML et al. Ecology and management of grapevine leafroll disease. Front Microbiol 2013; 4:94 [View Article] [PubMed]
    [Google Scholar]
  7. Liu S, Vijayendran D, Bonning BC. Next generation sequencing technologies for insect virus discovery. Viruses 2011; 3:1849–1869 [View Article] [PubMed]
    [Google Scholar]
  8. Rosario K, Breitbart M. Exploring the viral world through metagenomics. Curr Opin Virol 2011; 1:289–297 [View Article] [PubMed]
    [Google Scholar]
  9. Liu S, Chen Y, Bonning BC. RNA virus discovery in insects. Curr Opin Insect Sci 2015; 8:54–61 [View Article] [PubMed]
    [Google Scholar]
  10. Li C-X, Shi M, Tian J-H, Lin X-D, Kang Y-J et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 2015; 4:e05378 [View Article] [PubMed]
    [Google Scholar]
  11. Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X et al. Redefining the invertebrate RNA virosphere. Nature 2016; 540:539–543 [View Article] [PubMed]
    [Google Scholar]
  12. Nouri S, Matsumura EE, Kuo YW, Falk BW. Insect-specific viruses: from discovery to potential translational applications. Curr Opin Virol 2018; 33:33–41 [View Article] [PubMed]
    [Google Scholar]
  13. Roberts JMK, Anderson DL, Durr PA. Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. J Gen Virol 2018; 99:818–826 [View Article] [PubMed]
    [Google Scholar]
  14. Valles SM, Rivers AR. Nine new RNA viruses associated with the fire ant Solenopsis invicta from its native range. Virus Genes 2019; 55:368–380 [View Article] [PubMed]
    [Google Scholar]
  15. Ottati S, Chiapello M, Galetto L, Bosco D, Marzachì C et al. New viral sequences identified in the flavescence dorée phytoplasma vector Scaphoideus titanus. Viruses 2020; 12:E287 [View Article] [PubMed]
    [Google Scholar]
  16. Thekke-Veetil T, Lagos-Kutz D, McCoppin NK, Hartman GL, Ju H-K et al. Soybean Thrips (Thysanoptera: Thripidae) harbor highly diverse populations of arthropod, fungal and plant viruses. Viruses 2020; 12:E1376 [View Article]
    [Google Scholar]
  17. de Miranda JR, Granberg F, Low M, Onorati P, Semberg E et al. Virus diversity and loads in crickets reared for feed: implications for husbandry. Front Vet Sci 2021; 8:642085 [View Article]
    [Google Scholar]
  18. Paraskevopoulou S, Käfer S, Zirkel F, Donath A, Petersen M et al. Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evol 2021; 7:veab030 [View Article]
    [Google Scholar]
  19. Bonning BC. The insect virome: opportunities and challenges. Curr Issues Mol Biol 2020; 34:1–12 [View Article]
    [Google Scholar]
  20. Roundy CM, Azar SR, Rossi SL, Weaver SC, Vasilakis N. Insect-specific viruses: a historical overview and recent developments. In Advances in Virus Research vol 98 San Diego, CA: Elsevier Academic Press; 2017 pp 119–146S0065-3527(16)30064-1 [View Article]
    [Google Scholar]
  21. Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-specific virus discovery: significance for the arbovirus community. Viruses 2015; 7:4911–4928 [View Article] [PubMed]
    [Google Scholar]
  22. Junglen S, Drosten C. Virus discovery and recent insights into virus diversity in arthropods. Curr Opin Microbiol 2013; 16:507–513 [View Article] [PubMed]
    [Google Scholar]
  23. Carrillo-Tripp J, Bonning BC, Miller WA. Challenges associated with research on RNA viruses of insects. Curr Opin Insect Sci 2015; 8:62–68 [View Article] [PubMed]
    [Google Scholar]
  24. Guo Y, Goodman CL, Stanley DW, Bonning BC. Cell lines for honey bee virus research. Viruses 2020; 12:E236 [View Article] [PubMed]
    [Google Scholar]
  25. Valles SM, Porter SD, Firth AE. Solenopsis invicta virus 3: pathogenesis and stage specificity in red imported fire ants. Virology 2014; 460–461:66–71 [View Article] [PubMed]
    [Google Scholar]
  26. Williams T, Bergoin M, van Oers MM. Diversity of large DNA viruses of invertebrates. J Invertebr Pathol 2017; 147:4–22 [View Article] [PubMed]
    [Google Scholar]
  27. Vasilakis N, Tesh RB. Insect-specific viruses and their potential impact on arbovirus transmission. Curr Opin Virol 2015; 15:69–74 [View Article] [PubMed]
    [Google Scholar]
  28. Hall-Mendelin S, McLean BJ, Bielefeldt-Ohmann H, Hobson-Peters J, Hall RA et al. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit Vectors 2016; 9:414 [View Article] [PubMed]
    [Google Scholar]
  29. Halbach R, Junglen S, van Rij RP. Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense. Curr Opin Insect Sci 2017; 22:16–27 [View Article] [PubMed]
    [Google Scholar]
  30. Öhlund P, Lundén H, Blomström A-L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 2019; 55:127–137 [View Article] [PubMed]
    [Google Scholar]
  31. Roossinck MJ. The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 2011; 9:99–108 [View Article] [PubMed]
    [Google Scholar]
  32. Gullan PJ, Martin JH. Chapter 244 - Sternorrhyncha: (Jumping Plant-Lice, Whiteflies, Aphids, and Scale Insects). In Resh VH, Cardé RT. eds Encyclopedia of Insects, 2nd edn. edn San Diego, CA: Elsevier Academic Press; 2009 pp 957–967
    [Google Scholar]
  33. Yasmin T, Thekke-Veetil T, Hobbs HA, Nelson BD, McCoppin NK et al. Aphis glycines virus 1, a new bicistronic virus with two functional internal ribosome entry sites, is related to a group of unclassified viruses in the Picornavirales. J Gen Virol 2020; 101:105–111 [View Article] [PubMed]
    [Google Scholar]
  34. Liu S, Vijayendran D, Chen Y, Bonning BC. Aphis Glycines Virus 2, a Novel Insect Virus with a Unique Genome Structure. Viruses 2016; 8:E315 [View Article] [PubMed]
    [Google Scholar]
  35. Bonning BC. The Dicistroviridae: An emerging family of invertebrate viruses. Virol Sin 2009; 24:415–427 [View Article]
    [Google Scholar]
  36. Feng Y, Krueger EN, Liu S, Dorman K, Bonning BC et al. Discovery of known and novel viral genomes in soybean aphid by deep sequencing. Phytobiomes Journal 2017; 1:36–45 [View Article]
    [Google Scholar]
  37. Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB et al. Virome analysis of aphid populations that infest the barley field: the discovery of two novel groups of nege/kita-like viruses and other novel RNA viruses. Front Microbiol 2020; 11:509 [View Article] [PubMed]
    [Google Scholar]
  38. Rosario K, Capobianco H, Ng TFF, Breitbart M, Polston JE. RNA viral metagenome of whiteflies leads to the discovery and characterization of a whitefly-transmitted carlavirus in North America. PLoS One 2014; 9:e86748 [View Article] [PubMed]
    [Google Scholar]
  39. Nouri S, Salem N, Nigg JC, Falk BW. Diverse array of new viral sequences identified in worldwide populations of the asian citrus psyllid (Diaphorina citri) using viral metagenomics. J Virol 2015; 90:2434–2445 [View Article] [PubMed]
    [Google Scholar]
  40. Luria N, Smith E, Lachman O, Laskar O, Sela N et al. Isolation and characterization of a novel cripavirus, the first Dicistroviridae family member infecting the cotton mealybug Phenacoccus solenopsis. Arch Virol 2020; 165:1987–1994 [View Article] [PubMed]
    [Google Scholar]
  41. Huang H-J, Ye Z-X, Wang X, Yan X-T, Zhang Y et al. Diversity and infectivity of the RNA virome among different cryptic species of an agriculturally important insect vector: whitefly Bemisia tabaci. NPJ Biofilms Microbiomes 2021; 7:43 [View Article] [PubMed]
    [Google Scholar]
  42. Daane KM, Middleton MC, Sforza R, Cooper ML, Walton VM et al. Development of a multiplex PCR for identification of vineyard mealybugs. Environ Entomol 2011; 40:1595–1603 [View Article] [PubMed]
    [Google Scholar]
  43. Doyle J. DNA Protocols for Plants. In Hewitt GM, Johnston AWB, Young JPW. eds Molecular Techniques in Taxonomy.NATO ASI Series (Series H: Cell Biology vol 57 Berlin, Heidelberg: Springer; 1991 [View Article]
    [Google Scholar]
  44. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  45. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  46. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  47. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  48. Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 2019; 8:giz100 [View Article] [PubMed]
    [Google Scholar]
  49. Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2018; 46:D8–D13 [View Article] [PubMed]
    [Google Scholar]
  50. NCBI BLAST® Command Line Applications User Manual Bethesda, MD: National Center for Biotechnology Information; US; 2008 [PubMed]
    [Google Scholar]
  51. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res 1999; 9:868–877 [View Article] [PubMed]
    [Google Scholar]
  52. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  53. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017; 45:D200–D203 [View Article] [PubMed]
    [Google Scholar]
  54. Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat Biotechnol 2019; 37:29–37 [View Article] [PubMed]
    [Google Scholar]
  55. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  56. Madeira F, Park YM, Lee J, Buso N, Gur T et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019; 47:W636–W641 [View Article] [PubMed]
    [Google Scholar]
  57. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  58. Sánchez R, Serra F, Tárraga J, Medina I, Carbonell J et al. Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res 2011; 39:W470–4 [View Article] [PubMed]
    [Google Scholar]
  59. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  60. Miller MA, Pfeiffer W, Schwartz T. The cipres science gateway: a community resource for phylogenetic analyses. Proceedings of the 2011 TeraGrid Conference: extreme digital discovery 20111–8 [View Article]
    [Google Scholar]
  61. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  62. Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 2019; 14:e0219207 [View Article] [PubMed]
    [Google Scholar]
  63. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [View Article] [PubMed]
    [Google Scholar]
  64. Wickham H, Averick M, Bryan J, Chang W, McGowan L et al. Welcome to the Tidyverse. JOSS 2019; 4:1686 [View Article]
    [Google Scholar]
  65. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012; 13:1–11 [View Article] [PubMed]
    [Google Scholar]
  66. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC et al. Primer3--new capabilities and interfaces. Nucleic Acids Res 2012; 40:e115 [View Article] [PubMed]
    [Google Scholar]
  67. Valles SM, Chen Y, Firth AE, Guérin DMA, Hashimoto Y et al. ICTV Virus Taxonomy Profile: Iflaviridae. J Gen Virol 2017; 98:527–528 [View Article] [PubMed]
    [Google Scholar]
  68. Jan E. Divergent IRES elements in invertebrates. Virus Res 2006; 119:16–28 [View Article] [PubMed]
    [Google Scholar]
  69. Milusheva S, Phelan J, Piperkova N, Nikolova V, Gozmanova M et al. Molecular analysis of the complete genome of an unusual virus detected in sweet cherry (Prunus avium) in Bulgaria. Eur J Plant Pathol 2018; 153:197–207 [View Article]
    [Google Scholar]
  70. Valles SM, Chen Y, Firth AE, Guérin DMA, Hashimoto Y et al. ICTV Virus Taxonomy Profile: Dicistroviridae. J Gen Virol 2017; 98:355–356 [View Article] [PubMed]
    [Google Scholar]
  71. Yang S, Shan T, Wang Y, Yang J, Chen X. Virome of riverside phytocommunity ecosystem of an ancient canal. Research square 2020 [View Article]
    [Google Scholar]
  72. Graham RI, Rao S, Sait SM, Attoui H, Mertens PPC et al. Sequence analysis of a reovirus isolated from the winter moth Operophtera brumata (Lepidoptera: Geometridae) and its parasitoid wasp Phobocampe tempestiva (Hymenoptera: Ichneumonidae). Virus Res 2008; 135:42–47 [View Article] [PubMed]
    [Google Scholar]
  73. Attoui H, Mertens P, Becnel B, Bergoin M, Brussaard C et al. Family Reoviridae. In King AMQ, Adams MJ, Cartens EB, Lefkowitz EJ. eds Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses San Diego, CA: Elsevier Academic Press; 2011 pp 541–637
    [Google Scholar]
  74. Daane KM, Middleton MC, Sforza RFH, Kamps-Hughes N, Watson GW et al. Determining the geographic origin of invasive populations of the mealybug Planococcus ficus based on molecular genetic analysis. PLoS One 2018; 13:e0193852 [View Article] [PubMed]
    [Google Scholar]
  75. Bertin S, Pacifico D, Cavalieri V, Marzachì C, Bosco D. Transmission of Grapevine virus A and Grapevine leafroll-associated viruses 1 and 3 by Planococcus ficus and Planococcus citri fed on mixed-infected plants. Ann Appl Biol 2016; 169:53–63 [View Article] [PubMed]
    [Google Scholar]
  76. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol 2010; 84:9733–9748 [View Article] [PubMed]
    [Google Scholar]
  77. Koonin EV, Senkevich TG, Dolja VV. The ancient Virus World and evolution of cells. Biol Direct 2006; 1:1–27 [View Article] [PubMed]
    [Google Scholar]
  78. Wolf YI, Kazlauskas D, Iranzo J, Lucía-Sanz A, Kuhn JH et al. Origins and Evolution of the Global RNA Virome. mBio 2018; 9:e02329-18 [View Article] [PubMed]
    [Google Scholar]
  79. Daane K, Weber E, Bentley W. Formidable pest spreading through california vineyards. Practical Winery and Vineyard Magazine 2004
    [Google Scholar]
  80. Martelli GP. An overview on grapevine viruses, viroids, and the diseases they cause. In Meng B, Martelli GP, Golino DA, Fuchs M. eds Grapevine Viruses: Molecular Biology, Diagnostics and Management Springer International Publishing; 2017 pp 31–46 [View Article]
    [Google Scholar]
  81. Sabanadzovic S, Aboughanem-Sabanadzovic N, Martelli GP. Grapevine fleck and similar viruses. In Meng B, Martelli GP, Golino DA, Fuchs M. eds Grapevine Viruses: Molecular Biology, Diagnostics and Management Springer International Publishing; 2017 pp 331–349 [View Article]
    [Google Scholar]
  82. Le Gall O, Christian P, Fauquet CM, King AMQ, Knowles NJ et al. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol 2008; 153:715–727 [View Article] [PubMed]
    [Google Scholar]
  83. Fu Castillo AA, Del Real Valdez AA. Guía para el control de piojo harinoso de la vid. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Secretaría de Agricultura y Desarrollo Rural. Folleto 2550 2009
    [Google Scholar]
  84. Blanc S, Drucker M, Uzest M. Localizing viruses in their insect vectors. Annu Rev Phytopathol 2014; 52:403–425 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001717
Loading
/content/journal/jgv/10.1099/jgv.0.001717
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error