1887

Abstract

Current antiviral drugs are limited because of their adverse side effects and increased rate of resistance. In recent decades, much scientific effort has been invested in the discovery of new synthetic and natural compounds with promising antiviral properties. Among this new generation of compounds, antimicrobial peptides with antiviral activity have been described and are attracting attention due to their mechanism of action and biological properties. To understand the potential of antiviral peptides (AVPs), we analyse the antiviral activity of well-known AVP families isolated from different natural sources, discuss their physical–chemical properties, and demonstrate how AVP databases can guide us to design synthetic AVPs with better therapeutic properties. All considerations in this sphere of antiviral therapy clearly demonstrate the remarkable contribution that AVPs may make in conquering old as well as newly emerging viruses that plague humanity.

Keyword(s): antiviral , design , library , peptide and virus
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001661
2021-09-23
2021-10-25
Loading full text...

Full text loading...

References

  1. De Clercq E. In search of a selective antiviral chemotherapy. Clin Microbiol Rev 1997; 10:674–693 [View Article] [PubMed]
    [Google Scholar]
  2. Clutter DS, Jordan MR, Bertagnolio S, Shafer RW. HIV-1 drug resistance and resistance testing. Infect Genet Evol 2016; 46:292–307 [View Article] [PubMed]
    [Google Scholar]
  3. Li DK, Chung RT. Overview of direct-acting antiviral drugs and drug resistance of hepatitis C virus. Methods Mol Biol 2019; 1911:3–32 [View Article] [PubMed]
    [Google Scholar]
  4. Piret J, Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral Res 2019; 163:91–105 [View Article] [PubMed]
    [Google Scholar]
  5. Ghosh AK, Sridhar PR, Leshchenko S, Hussain AK, Li J. Structure-based design of novel HIV-1 protease inhibitors to combat drug resistance. J Med Chem 2006; 49:5252–5261 [View Article] [PubMed]
    [Google Scholar]
  6. Lucas-Hourani M, Munier-Lehmann H, Helynck O, Komarova A, Desprès P et al. High-throughput screening for broad-spectrum chemical inhibitors of RNA viruses. J Vis Exp 201451222
    [Google Scholar]
  7. Li G, Gao Q, Yuan S, Wang L, Altmeyer R. Characterization of three small molecule inhibitors of enterovirus 71 identified from screening of a library of natural products. Antiviral Res 2017; 143:85–96 [View Article] [PubMed]
    [Google Scholar]
  8. Liu J, Li K, Cheng L, Shao J, Yang S. A high-throughput drug screening strategy against coronaviruses. Int J Infect Dis 2020; 103:300–304 [View Article] [PubMed]
    [Google Scholar]
  9. Shechter S, Thomas DR, Jans DA. Application of in silico and HTS approaches to identify nuclear import inhibitors for venezuelan equine encephalitis virus capsid protein: a case study. Front Chem 2020; 8:573121 [View Article] [PubMed]
    [Google Scholar]
  10. Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Rahman NA. Protegrin-1 inhibits dengue NS2B-NS3 serine protease and viral replication in MK2 cells. J Biomed Biotechnol 2012; 2012:251482 [View Article] [PubMed]
    [Google Scholar]
  11. Rothan HA, Bahrani H, Rahman NA, Yusof R. Identification of natural antimicrobial agents to treat dengue infection: in vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol 2014; 14:1–10 [View Article]
    [Google Scholar]
  12. Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15:2377–2392 [View Article] [PubMed]
    [Google Scholar]
  13. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016; 44:D1087–93 [View Article] [PubMed]
    [Google Scholar]
  14. Wang G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol Biol 2015; 1268:43–66 [View Article] [PubMed]
    [Google Scholar]
  15. Bechinger B, Gorr SU. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 2017; 96:254–260 [View Article] [PubMed]
    [Google Scholar]
  16. Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist 2018; 24:747–767 [View Article] [PubMed]
    [Google Scholar]
  17. Wang G. Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics (Basel) 2020; 9:491 [View Article]
    [Google Scholar]
  18. Kolano L, Knappe D, Volke D, Sträter N, Hoffmann R. Ribosomal target-binding sites of antimicrobial peptides Api137 and Onc112 are conserved among pathogens indicating new lead structures to develop novel broad-spectrum antibiotics. Chembiochem 2020; 21:2628–2634 [View Article] [PubMed]
    [Google Scholar]
  19. Wu D, Gao Y, Qi Y, Chen L, Ma Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 2014; 351:13–22 [View Article] [PubMed]
    [Google Scholar]
  20. Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human antimicrobial peptides as therapeutics for viral infections. Viruses 2019; 11:704 [View Article]
    [Google Scholar]
  21. Madanchi H, Shoushtari M, Kashani HH, Sardari S. Antimicrobial peptides of the vaginal innate immunity and their role in the fight against sexually transmitted diseases. New Microbes New Infect 2019; 34:100627 [View Article] [PubMed]
    [Google Scholar]
  22. Dubos RJ. Studies on bactericidal agent extracted from a soil Bacillus: I. Preparation of the agent. J Exp Med 1939; 70:1–10 [View Article] [PubMed]
    [Google Scholar]
  23. Yin C, Wong JH, TB N. Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin. Curr Mol Med 2014; 14:1139–1154 [View Article] [PubMed]
    [Google Scholar]
  24. Shartouny JR, Jacob J. Mining the tree of life: Host defense peptides as antiviral therapeutics. Semin Cell Dev Biol 2019; 88:147–155 [View Article] [PubMed]
    [Google Scholar]
  25. Chessa C, Bodet C, Jousselin C, Wehbe M, Lévêque N. Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes. Front Microbiol 2020; 11:1155 [View Article] [PubMed]
    [Google Scholar]
  26. Memariani H, Memariani M, Moravvej H, Shahidi-Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur J Clin Microbiol Infect Dis 2020; 39:5–17 [View Article] [PubMed]
    [Google Scholar]
  27. Wieczorek M, Jenssen H, Kindrachuk J, Scott WR, Elliott M. Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem Biol 2010; 17:970–980 [View Article] [PubMed]
    [Google Scholar]
  28. Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A. Cathelicidins: family of antimicrobial peptides. Mol Biol Rep 2012; 39:10957–10970 [View Article] [PubMed]
    [Google Scholar]
  29. Frohm M, Agerberth B, Ahangari G, Stâhle-Bäckdahl M, Lidén S. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997; 272:15258–15263 [View Article] [PubMed]
    [Google Scholar]
  30. Wang G, Narayana JL, Mishra B, Zhang Y, Wang F. Design of antimicrobial peptides: progress made with human cathelicidin LL-37. Adv Exp Med Biol 2019; 1117:215–240 [View Article] [PubMed]
    [Google Scholar]
  31. Wang G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 2008; 283:32637–32643 [View Article] [PubMed]
    [Google Scholar]
  32. Ramanathan B, Davis EG, Ross CR, Blecha F. Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 2002; 4:361–372 [View Article] [PubMed]
    [Google Scholar]
  33. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol 2005; 3:238–250 [View Article] [PubMed]
    [Google Scholar]
  34. Howell MD, Wollenberg A, Gallo RL, Flaig M, Streib JE. Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 2006; 117:836–841 [View Article] [PubMed]
    [Google Scholar]
  35. Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 2008; 122:261–266 [View Article] [PubMed]
    [Google Scholar]
  36. Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL. Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 2004; 172:1763–1767 [View Article] [PubMed]
    [Google Scholar]
  37. Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One 2013; 8:e73659 [View Article] [PubMed]
    [Google Scholar]
  38. Currie SM, Gwyer Findlay E, McFarlane AJ, Fitch PM, Böttcher B. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol 2016; 196:2699–2710 [View Article] [PubMed]
    [Google Scholar]
  39. Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One 2011; 6:e25333 [View Article]
    [Google Scholar]
  40. Tripathi S, Tecle T, Verma A, Crouch E, White M. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol 2013; 94:40–49 [View Article] [PubMed]
    [Google Scholar]
  41. Tripathi S, Wang G, White M, Qi L, Taubenberger J. Antiviral Activity of the Human Cathelicidin, LL-37, and Derived Peptides on Seasonal and Pandemic Influenza A Viruses. PLoS One 2015; 10:e0124706 [View Article] [PubMed]
    [Google Scholar]
  42. Tripathi S, Verma A, Kim EJ, White MR, Hartshorn KL. LL-37 modulates human neutrophil responses to influenza A virus. J Leukoc Biol 2014; 96:931–938 [View Article] [PubMed]
    [Google Scholar]
  43. Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Söderlund J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res 2007; 5:410–415 [View Article] [PubMed]
    [Google Scholar]
  44. Wang G, Watson KM, Buckheit RW. Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob Agents Chemother 2008; 52:3438–3440 [View Article] [PubMed]
    [Google Scholar]
  45. Wong JH, Legowska A, Rolka K, Ng TB, Hui M. Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides 2011; 32:1117–1122 [View Article] [PubMed]
    [Google Scholar]
  46. He M, Zhang H, Li Y, Wang G, Tang B. Cathelicidin-derived antimicrobial peptides inhibit zika virus through direct inactivation and interferon pathway. Front Immunol 2018; 9:722 [View Article] [PubMed]
    [Google Scholar]
  47. Ahmed A, Siman-Tov G, Keck F, Kortchak S, Bakovic A. Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antiviral Res 2019; 164:61–69 [View Article] [PubMed]
    [Google Scholar]
  48. Yu Y, Cooper CL, Wang G, Morwitzer MJ, Kota K. Engineered human cathelicidin antimicrobial peptides inhibit ebola virus infection. iScience 2020; 23:100999 [View Article] [PubMed]
    [Google Scholar]
  49. Wang C, Wang S, Li D, Chen P, Han S et al. Human cathelicidin inhibits SARS-CoV-2 infection: killing two birds with one stone. ACS Infect Dis 2021acsinfecdis
    [Google Scholar]
  50. Yu J, Dai Y, Fu Y, Wang K, Yang Y. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antiviral Res 2021; 187:105021 [View Article] [PubMed]
    [Google Scholar]
  51. Hultmark D, Steiner H, Rasmuson T, Boman HG. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 1980; 106:7–16 [View Article] [PubMed]
    [Google Scholar]
  52. Lee E, Kim JK, Jeon D, Jeong KW, Shin A. Functional roles of aromatic residues and helices of Papiliocin in its antimicrobial and anti-inflammatory activities. Sci Rep 2015; 5:12048 [View Article] [PubMed]
    [Google Scholar]
  53. Sato H, Feix JB. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochim Biophys Acta 2006; 1758:1245–1256 [View Article] [PubMed]
    [Google Scholar]
  54. Albiol Matanic VC, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 2004; 23:382–389 [View Article] [PubMed]
    [Google Scholar]
  55. Chiou PP, Lin CM, Perez L, Chen TT. Effect of cecropin B and a synthetic analogue on propagation of fish viruses in vitro. Mar Biotechnol (NY) 2002; 4:294–302 [View Article] [PubMed]
    [Google Scholar]
  56. Guo C, Huang Y, Cong P, Liu X, Chen Y. Cecropin P1 inhibits porcine reproductive and respiratory syndrome virus by blocking attachment. BMC Microbiol 2014; 18:273 [View Article]
    [Google Scholar]
  57. Liu X, Guo C, Huang Y, Zhang X, Chen Y. Inhibition of porcine reproductive and respiratory syndrome virus by Cecropin D in vitro. Infect Genet Evol 2015; 34:7–16 [View Article] [PubMed]
    [Google Scholar]
  58. Tam JP, Lu YA, Yang JL, Chiu KW. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci USA 1999; 96:8913–8918 [View Article] [PubMed]
    [Google Scholar]
  59. Lindholm P, Göransson U, Johansson S, Claeson P, Gullbo J. Cyclotides: a novel type of cytotoxic agents. Mol Cancer Ther 2002; 1:365–369 [PubMed]
    [Google Scholar]
  60. Ireland DC, Wang CK, Wilson JA, Gustafson KR, Craik DJ. Cyclotides as natural anti-HIV agents. Biopolymers 2008; 90:51–60 [View Article] [PubMed]
    [Google Scholar]
  61. Weidmann J, Craik DJ. Discovery, structure, function, and applications of cyclotides: circular proteins from plants. J Exp Bot 2016; 67:4801–4812 [View Article] [PubMed]
    [Google Scholar]
  62. Gustafson KR, McKee TC, Bokesch HR. Anti-HIV cyclotides. Curr Protein Pept Sci 2004; 5:331–340 [View Article] [PubMed]
    [Google Scholar]
  63. Henriques ST, Huang YH, Rosengren KJ, Franquelim HG, Carvalho FA. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 2011; 286:24231–24241 [View Article] [PubMed]
    [Google Scholar]
  64. Daly NL, Gustafson KR, Craik DJ. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett 2004; 574:69–72 [View Article] [PubMed]
    [Google Scholar]
  65. Henriques ST, Huang YH, Castanho MA, Bagatolli LA, Sonza S. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J Biol Chem 2012; 287:33629–33643 [View Article] [PubMed]
    [Google Scholar]
  66. Colgrave ML, Craik DJ. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 2004; 43:5965–5975 [View Article] [PubMed]
    [Google Scholar]
  67. Aboye TL, Ha H, Majumder S, Christ F, Debyser Z. Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity. J Med Chem 2012; 55:10729–10734 [View Article] [PubMed]
    [Google Scholar]
  68. Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 2008; 20:2471–2483 [View Article] [PubMed]
    [Google Scholar]
  69. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol 2005; 6:551–557 [View Article] [PubMed]
    [Google Scholar]
  70. Amerikova M, El-Tibi IP, Maslarska V, Bozhanov S, Tachkov K. Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents. Biotechnol Biotechnol Equip 2019; 33:671–682
    [Google Scholar]
  71. de Leeuw E, Li C, Zeng P, Li C, Diepeveen-de Buin M. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 2010; 584:1543–1548 [View Article] [PubMed]
    [Google Scholar]
  72. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 2011; 469:419–423 [View Article] [PubMed]
    [Google Scholar]
  73. Lehrer RI, Daher K, Ganz T, Selsted ME. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J Virol 1985; 54:467–472 [View Article] [PubMed]
    [Google Scholar]
  74. Yasin B, Wang W, Pang M, Cheshenko N, Hong T. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 2004; 78:5147–5156 [View Article] [PubMed]
    [Google Scholar]
  75. Hazrati E, Galen B, Lu W, Wang W, Ouyang Y. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 2006; 177:8658–8666 [View Article] [PubMed]
    [Google Scholar]
  76. Demirkhanyan LH, Marin M, Padilla-Parra S, Zhan C, Miyauchi K. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J Biol Chem 2012; 287:28821–28838 [View Article] [PubMed]
    [Google Scholar]
  77. Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W. Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 2006; 103:1516–1521 [View Article] [PubMed]
    [Google Scholar]
  78. Wohlford-Lenane CL, Meyerholz DK, Perlman S, Zhou H, Tran D. Rhesus theta-defensin prevents death in a mouse model of severe acute respiratory syndrome coronavirus pulmonary disease. J Virol 2009; 83:11385–11390 [View Article] [PubMed]
    [Google Scholar]
  79. Smith JG, Nemerow GR. Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 2008; 3:11–19 [View Article] [PubMed]
    [Google Scholar]
  80. Nguyen EK, Nemerow GR, Smith JG. Direct evidence from single-cell analysis that human {alpha}-defensins block adenovirus uncoating to neutralize infection. J Virol 2010; 84:4041–4049 [View Article] [PubMed]
    [Google Scholar]
  81. Snijder J, Reddy VS, May ER, Roos WH, Nemerow GR. Integrin and defensin modulate the mechanical properties of adenovirus. J Virol 2013; 87:2756–2766 [View Article] [PubMed]
    [Google Scholar]
  82. Dugan AS, Maginnis MS, Jordan JA, Gasparovic ML, Manley K. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J Biol Chem 2008; 283:31125–31232 [View Article] [PubMed]
    [Google Scholar]
  83. Gounder AP, Wiens ME, Wilson SS, Lu W, Smith JG. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. J Biol Chem 2012; 287:24554–24562 [View Article] [PubMed]
    [Google Scholar]
  84. Wang Z, Wang G. APD: the Antimicrobial Peptide Database. Nucleic Acids Res 2004; 32:D590–2 [View Article] [PubMed]
    [Google Scholar]
  85. Wang G. Database resources dedicated to antimicrobial peptides. Chen C-Y, Yan X, Jackson C. eds In Antimicrobial Resistance and Food Safety: Methods and Techniques Boston: Academic Press; 2015 pp 365–384
    [Google Scholar]
  86. Kang X, Dong F, Shi C, Liu S, Sun J. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 2019; 6:148 [View Article] [PubMed]
    [Google Scholar]
  87. Wang G. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides. Protein Sci 2020; 29:8–18 [View Article] [PubMed]
    [Google Scholar]
  88. Pirtskhalava M, Amstrong AA, Grigolava M, Chubinidze M, Alimbarashvili E. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res 2021; 49:D288–D297 [View Article] [PubMed]
    [Google Scholar]
  89. Mishra B, Wang G. The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Front Immunol 2012; 3:221 [View Article] [PubMed]
    [Google Scholar]
  90. Lee JH, Cho KS, Lee J, Yoo J, Lee J. Diptericin-like protein: an immune response gene regulated by the anti-bacterial gene induction pathway in drosophila. Gene 2001; 271:233–238 [View Article] [PubMed]
    [Google Scholar]
  91. Mihajlovic M, Lazaridis T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim Biophys Acta 2012; 1818:1274–1283 [View Article] [PubMed]
    [Google Scholar]
  92. Jiang Z, Vasil AI, Hale J, Hancock RE, Vasil ML. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Adv Exp Med Biol 2009; 611:561–562 [View Article] [PubMed]
    [Google Scholar]
  93. Mishra B, Lakshmaiah Narayana J, Lushnikova T, Wang X, Wang G. Low cationicity is important for systemic in vivo efficacy of database-derived peptides against drug-resistant Gram-positive pathogens. Proc Natl Acad Sci U S A 2019; 116:13517–13522 [View Article] [PubMed]
    [Google Scholar]
  94. Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 2009; 10:585–606 [View Article] [PubMed]
    [Google Scholar]
  95. Wimley WC, White SH. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 1996; 3:842–848 [View Article] [PubMed]
    [Google Scholar]
  96. Badani H, Garry RF, Wimley WC. Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta 2014; 1838:2180–2197 [View Article] [PubMed]
    [Google Scholar]
  97. Harrison SC. Viral membrane fusion. Virology 2015 479–480 498–507 [View Article] [PubMed]
    [Google Scholar]
  98. White JM, Whittaker GR. Fusion of Enveloped Viruses in Endosomes. Traffic 2016; 17:593–614 [View Article] [PubMed]
    [Google Scholar]
  99. Staring J, Raaben M, Brummelkamp TR. Viral escape from endosomes and host detection at a glance. J Cell Sci 2018; 131:jcs216259 [View Article]
    [Google Scholar]
  100. Segrest JP, De Loof H, Dohlman JG, Brouillette CG, Anantharamaiah GM. Amphipathic helix motif: classes and properties. Proteins 1990; 8:103–117 [View Article] [PubMed]
    [Google Scholar]
  101. Ladokhin AS, White SH. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol 1999; 285:1363–1369 [View Article] [PubMed]
    [Google Scholar]
  102. Mishra B, Wang G. Ab initio design of potent anti-MRSA peptides based on database filtering technology. J Am Chem Soc 2012; 134:12426–12429 [View Article] [PubMed]
    [Google Scholar]
  103. Wang G, Watson KM, Peterkofsky A, Buckheit RW. Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database. Antimicrob Agents Chemother 2010; 54:1343–1346 [View Article] [PubMed]
    [Google Scholar]
  104. Nagarajan D, Nagarajan T, Roy N, Kulkarni O, Ravichandran S. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J Biol Chem 2018; 293:3492–3509 [View Article] [PubMed]
    [Google Scholar]
  105. Rondón-Villarreal P, Sierra DA, Torres R. Machine learning in the rational design of antimicrobial peptides. Curr Comput Aided Drug Des 2014; 10:183–190 [View Article] [PubMed]
    [Google Scholar]
  106. Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?. Interface Focus 2017; 7:20160153 [View Article] [PubMed]
    [Google Scholar]
  107. Giguère S, Laviolette F, Marchand M, Tremblay D, Moineau S. Machine learning assisted design of highly active peptides for drug discovery. PLoS Comput Biol 2015; 11:e1004074 [View Article] [PubMed]
    [Google Scholar]
  108. Torres MD, Sothiselvam S, TK L, De La Fuente-Nunez C. Peptide design principles for antimicrobial applications. J Mol Biol 2009; 431:3547–3567
    [Google Scholar]
  109. Plisson F, Ramírez-Sánchez O, Martínez-Hernández C. Machine learning-guided discovery and design of non-hemolytic peptides. Sci Rep 2020; 10:16581 [View Article] [PubMed]
    [Google Scholar]
  110. Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN. Computer-aided design of antimicrobial peptides: are we generating effective drug candidates?. Front Microbiol 2020; 10:3097 [View Article] [PubMed]
    [Google Scholar]
  111. Hoffmann AR, Guha S, Wu E, Ghimire J, Wang Y et al. Broad-spectrum antiviral entry inhibition by interfacially active peptides. J Virol 2020; 94:e01682 [View Article]
    [Google Scholar]
  112. Hrobowski YM, Garry RF, Michael SF. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J 2005; 2:49 [View Article] [PubMed]
    [Google Scholar]
  113. Sainz B, Mossel EC, Gallaher WR, Wimley WC, Peters CJ. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res 2006; 120:146–155 [View Article] [PubMed]
    [Google Scholar]
  114. Melnik LI, Garry RF, Morris CA. Peptide inhibition of human cytomegalovirus infection. Virol J 2011; 8:76 [View Article] [PubMed]
    [Google Scholar]
  115. Garry R, Wilson R. US Patent: Influenza Inhibiting Compositions and Methods, 1420 US8222204 B2 2009
    [Google Scholar]
  116. Ries M, Schuster P, Thomann S, Donhauser N, Vollmer J. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J Leukoc Biol 2013; 94:123–135 [View Article] [PubMed]
    [Google Scholar]
  117. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today 2015; 20:122–128 [View Article] [PubMed]
    [Google Scholar]
  118. Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 2017; 38:87–96 [View Article] [PubMed]
    [Google Scholar]
  119. Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov 2020; 19:277–289 [View Article] [PubMed]
    [Google Scholar]
  120. de la Torre BG, Albericio F. Peptide therapeutics 2.0. Molecules 2020; 25:2293 [View Article]
    [Google Scholar]
  121. Piotto SP, Sessa L, Concilio S, Iannelli P. YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Agents 2012; 39:346–351 [View Article] [PubMed]
    [Google Scholar]
  122. Hammami R, Ben Hamida J, Vergoten G, Fliss I. PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 2009; 37:D963–968 [View Article] [PubMed]
    [Google Scholar]
  123. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 2010; 38:D774–780 [View Article] [PubMed]
    [Google Scholar]
  124. Wynendaele E, Bronselaer A, Nielandt J, D’Hondt M, Stalmans S. Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 2013; 41:D655–659 [View Article] [PubMed]
    [Google Scholar]
  125. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN. The protein data bank. Nucleic Acids Res 2000; 28:235–242 [View Article] [PubMed]
    [Google Scholar]
  126. Snider C, Jayasinghe S, Hristova K, White SH. MPEx: a tool for exploring membrane proteins. Protein Sci 2009; 18:2624–2628 [View Article] [PubMed]
    [Google Scholar]
  127. de Vries SJ, van Dijk M, Bonvin AM. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 2010; 5:883–897 [View Article] [PubMed]
    [Google Scholar]
  128. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 2014; 30:1771–1773 [View Article] [PubMed]
    [Google Scholar]
  129. Rohl CA, Strauss CE, Misura KM, Baker D. Protein structure prediction using Rosetta. Methods Enzymol 2004; 383:66–93 [View Article] [PubMed]
    [Google Scholar]
  130. Lee TS, Allen BK, Giese TJ, Guo Z, Li P. Alchemical Binding Free Energy Calculations in AMBER20: advances and best practices for drug discovery. J Chem Inf Model 2020; 60:5595–5623 [View Article] [PubMed]
    [Google Scholar]
  131. Yang J, Yan R, Roy A, Xu D, Poisson J. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015; 12:7–8 [View Article] [PubMed]
    [Google Scholar]
  132. Gautam A, Chaudhary K, Kumar R, Raghava GP. Computer-aided virtual screening and designing of cell-penetrating peptides. Methods Mol Biol 2015; 1324:59–69 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001661
Loading
/content/journal/jgv/10.1099/jgv.0.001661
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error