Transcriptome of Cydia pomonella granulovirus in susceptible and type I resistant codling moth larvae Open Access

Abstract

The baculovirus Cydia pomonella granulovirus (CpGV) is a biocontrol agent used worldwide against the codling moth (CM), L., a severe pest in organic and integrated pome fruit production. Its successful application is increasingly challenged by the occurrence of CM populations resistant to commercial CpGV products. Whereas three types (I–III) of CpGV resistance have been identified, type I resistance compromising the efficacy of CpGV-M, the so-called Mexican isolate of CpGV, is assumed to be the most widely distributed resistance type in Central Europe. Despite the wide use of CpGV products as biocontrol agents, little information is available on gene-expression levels in CM larvae. In this study, the transcriptome of CpGV-M infecting susceptible (CpS) and resistant (CpRR1) CM larvae was analysed at 24, 48, 72, 96 and 120 hours post infection in the midgut and fat body tissue by using a newly developed microarray covering all ORFs of the CpGV genome. According to their transcript abundance, the CpGV genes were grouped into four temporal clusters to which groups of known and unknown function could be assigned. In addition, sets of genes differentially expressed in the midgut and fat body were found in infected susceptible CpS larvae. For the resistant CpRR1 larvae treated with CpGV-M, viral entry in midgut cells could be confirmed from onset but a significantly reduced gene expression, indicating that type I resistance is associated with a block of viral gene transcription and replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001566
2021-02-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/102/3/vir001566.html?itemId=/content/journal/jgv/10.1099/jgv.0.001566&mimeType=html&fmt=ahah

References

  1. Fan J, Wennmann JT, Wang D, Jehle JA. Single nucleotide polymorphism (SNP) frequencies and distribution reveal complex genetic composition of seven novel natural isolates of Cydia pomonella granulovirus. Virology 2020; 541:32–40 [View Article][PubMed]
    [Google Scholar]
  2. Wennmann JT, Radtke P, Eberle KE, Gueli Alletti G, Jehle JA. Deciphering single nucleotide polymorphisms and evolutionary trends in isolates of the Cydia pomonella granulovirus. Viruses 2017; 9:227 [View Article][PubMed]
    [Google Scholar]
  3. Lacey LA, Shapiro-Ilan DI. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 2008; 53:121–144 [View Article][PubMed]
    [Google Scholar]
  4. Gröner A. Specificity and safety of baculoviruses. In Granados RR, Federici BA. (editors) The Biology of Baculoviruses 1 Boca Raton, Florida: CRC Press; 1986 pp 177–202
    [Google Scholar]
  5. Lacey LA, Thomson D, Vincent C, Arthurs SP. Codling moth granulovirus: a comprehensive review. Biocontrol Sci Technol 2008; 18:639–663
    [Google Scholar]
  6. Huber J. Western Europe. In Hunter-Fujita FR, Entwistle PF, Evans HF, Crook NE. (editors) Insect Viruses and Pest Management New York: Wiley; 1998 pp 201–215
    [Google Scholar]
  7. Tanada Y. A granulosis virus of the codling moth, Carpocapsa pomonella (Linnaeus) (Olethreutidae, Lepidoptera). J Inverteb Pathol 1964; 6:378–380
    [Google Scholar]
  8. Fan J, Wennmann JT, Wang D, Jehle JA. Novel diversity and virulence patterns found in new isolates of Cydia pomonella granulovirus from China. Appl Environ Microbiol 2019; 86:e02000-19
    [Google Scholar]
  9. Arneodo JD, De Anna J, Salvador R, Farinon M, Quintana G. Prospection and molecular analysis of CpGV isolates infecting Cydia pomonella at different geographical locations in Argentina. Ann Appl Biol 2015; 166:67–74
    [Google Scholar]
  10. Gan E, Li X, Yu H, Wu Z, Li X. Virulence determination for three native Cydia pomonella granulovirus strains and their control effect in field. J Northwest A&F Univ 2011; 39:119–122
    [Google Scholar]
  11. Rezapanah M, Shojai-Estabragh S, Huber J, Jehle JA. Molecular and biological characterization of new isolates of Cydia pomonella granulovirus from Iran. J Pest Sci 2008; 81:187–191
    [Google Scholar]
  12. Crook NE, Spencer RA, Payne CC, Leisy DJ. Variation in Cydia pomonella granulosis virus isolates and physical maps of the DNA from three variants. J Gen Virol 1985; 66:2423–2430
    [Google Scholar]
  13. Fan J, Jehle JA, Wennmann JT. Population structure of Cydia pomonella granulovirus isolates revealed by quantitative analysis of genetic variation. Virus Evol 2020; 6:veaa073
    [Google Scholar]
  14. Wennmann JT, Fan J, Jehle JA. Bacsnp: using single nucleotide polymorphism (SNP) specificities and frequencies to identify genotype composition in baculoviruses. Viruses 2020; 12:625 [View Article][PubMed]
    [Google Scholar]
  15. Graillot B, Bayle S, Blachere-Lopez C, Besse S, Siegwart M et al. Biological characteristics of experimental genotype mixtures of Cydia pomonella granulovirus (CpGV): Ability to control susceptible and resistant pest populations. Viruses 2016; 8:147 [View Article][PubMed]
    [Google Scholar]
  16. Alletti GG, Sauer AJ, Weihrauch B, Fritsch E, Undorf-Spahn K et al. Using next generation sequencing to identify and quantify the genetic composition of resistance-breaking commercial isolates of Cydia pomonella granulovirus. Viruses 2017; 9:250 [View Article][PubMed]
    [Google Scholar]
  17. Zingg D, Züger M, Bollhalder F, Andermatt M. Use of resistance overcoming CpGV isolates and CpGV resistance situation of the codling moth in Europe seven years after the first discovery of resistance to CpGV-M. IOBC-WPRS Bulletin 2011; 66:401–404
    [Google Scholar]
  18. Sauphanor B, Berling M, Toubon J-F, Reyes M. Carpocapse des pommes cas de résistance aux virus de la granulose dans le Sud-Est. Phytoma 2006; 590:24–27
    [Google Scholar]
  19. Fritsch E, Undorf-Spahn K, Kienzle J, Zebitz CPW, Huber J. Apfelwickler-Granulovirus: Erste Hinweise auf Unterschiede in Der Empfindlichkeit lokaler Apfelwickler-Populationen. Nachrichtenbl Deut Pflanzenschutzd 2005; 57:29–34
    [Google Scholar]
  20. Schulze-Bopp S, Jehle JA. Development of a direct test of baculovirus resistance in wild codling moth populations. J Appl Entomol 2013; 137:153–160
    [Google Scholar]
  21. Schmitt A, Bisutti IL, Ladurner E, Benuzzi M, Sauphanor B. The occurrence and distribution of resistance of codling moth to Cydia pomonella granulovirus in Europe. J Appl Entomol 2013; 137:641–649
    [Google Scholar]
  22. Zichová T, Falta V, Kocourek F, Stará J. Differences in the susceptibility of codling moth populations to Cydia pomonella granulovirus in the Czech Republic. Hort Sci 2011; 38:21–26
    [Google Scholar]
  23. Asser-Kaiser S, Heckel DG, Jehle JA. Sex linkage of CpGV resistance in a heterogeneous field strain of the codling moth Cydia pomonella (L.). J Invertebr Pathol 2010; 103:59–64 [View Article][PubMed]
    [Google Scholar]
  24. Berling M, Blachere-Lopez C, Soubabere O, Lery X, Bonhomme A et al. Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl Environ Microbiol 2009; 75:925–930 [View Article][PubMed]
    [Google Scholar]
  25. Asser-Kaiser S, Fritsch E, Undorf-Spahn K, Kienzle J, Eberle KE et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 2007; 317:1916–1918 [View Article][PubMed]
    [Google Scholar]
  26. Jehle JA, Schulze-Bopp S, Undorf-Spahn K, Fritsch E. Evidence for a second type of resistance against Cydia pomonella Granulovirus in field populations of codling moths. Appl Environ Microbiol 2017; 83:e02330–16 [View Article][PubMed]
    [Google Scholar]
  27. Sauer AJ, Fritsch E, Undorf-Spahn K, Nguyen P, Marec F et al. Novel resistance to Cydia pomonella granulovirus (CpGV) in codling moth shows autosomal and dominant inheritance and confers cross-resistance to different CpGV genome groups. PLoS One 2017; 12:e0179157 [View Article][PubMed]
    [Google Scholar]
  28. Sauer AJ, Schulze-Bopp S, Fritsch E, Undorf-Spahn K, Jehle JA. A third type of resistance to Cydia pomonella granulovirus in codling moths shows a mixed Z-linked and autosomal inheritance pattern. Appl and Environ Microbiol 2017; 83:e01036–17
    [Google Scholar]
  29. Gebhardt MM, Eberle KE, Radtke P, Jehle JA. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38. Proc Natl Acad Sci U S A 2014; 111:15711–15716 [View Article][PubMed]
    [Google Scholar]
  30. Asser-Kaiser S, Radtke P, El-Salamouny S, Winstanley D, Jehle JA. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication. Virology 2011; 410:360–367
    [Google Scholar]
  31. Shrestha A, Bao K, Chen Y-R, Chen W, Wang P et al. Global analysis of baculovirus Autographa californica multiple nucleopolyhedrovirus gene expression in the midgut of the Lepidopteran host Trichoplusia ni . J Virol 2018; 92:e01277–18 [View Article][PubMed]
    [Google Scholar]
  32. Chen Y-R, Zhong S, Fei Z, Hashimoto Y, Xiang JZ et al. The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus in Trichoplusia ni cells. J Virol 2013; 87:6391–6405 [View Article][PubMed]
    [Google Scholar]
  33. Bathon H. Zur Zucht des Apfelwicklers, Laspeyresia pomonella (L.) (Lep. Tortricidae), auf einem künstlichen Nährmedium. Mitt dtsch Ges allg angew Entomol 1981; 2:136–140
    [Google Scholar]
  34. Ivaldi-Sender C. Techniques simple pour l’élévage permanent de la tordeuse orientale, Grapholita molesta (Lep., Tortricidae), sur milieu artificiel. Ann Zool Ecol Anim 1974; 6:337–343
    [Google Scholar]
  35. Jehle JA, Backhaus H, Fritsch E, Huber J. Physical map of the Cryptophlebia leucotreta granulosis virus genome and its relationship to the genome of Cydia pomonella granulosis virus. J Gen Virol 1992; 73:1621–1626 [View Article][PubMed]
    [Google Scholar]
  36. Eberle KE, Wennmann JT, Kleespies RG, Jehle JA. Chapter II: Basic techniques in insect virology. In Lacey LA. editor Manual of Techniques in Invertebrate Pathology Amsterdam: Academic Press [Imprint] Elsevier Science & Technology Books; 2012 pp 15–74
    [Google Scholar]
  37. Luque T, Finch R, Crook N, O'Reilly DR, Winstanley D. The complete sequence of the Cydia pomonella granulovirus genome. J Gen Virol 2001; 82:2531–2547 [View Article][PubMed]
    [Google Scholar]
  38. van Oers MM, Vlak JM. Baculovirus genomics. Curr Drug Targets 2007; 8:1051–1068 [View Article][PubMed]
    [Google Scholar]
  39. Xu B, Yoo S, Guarino LA. Differential transcription of baculovirus late and very late promoters: fractionation of nuclear extracts by phosphocellulose chromatography. J Virol 1995; 69:2912–2917 [View Article][PubMed]
    [Google Scholar]
  40. Rohrmann GF. Baculovirus Molecular Biology [Internet].. Bethesda (MD): National Center for Biotechnology Information, 4th ed. US: 2019
    [Google Scholar]
  41. Wan F, Yin C, Tang R, Chen M, Wu Q et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat Commun 2019; 10:4237 [View Article][PubMed]
    [Google Scholar]
  42. Harrison RL, Herniou EA, Jehle JA, Theilmann DA, Burand JP et al. ICTV Virus Taxonomy Profile: Baculoviridae . J Gen Virol 2018; 99:1185–1186 [View Article][PubMed]
    [Google Scholar]
  43. Friesen PD. Regulation of baculovirus early gene expression. In Miller LK. editor The Baculoviruses New York and London: Plenum Press; 1997 pp 141–170
    [Google Scholar]
  44. Kovacs GR. Novel regulatory properties of the IEl and IEO transactivators encoded by the baculovirus Autographa californica multicapsid nuclear polyhedrosis virus. J Virol 1991; 65:8
    [Google Scholar]
  45. Krappa R, Knebel-Mörsdorf D. Identification of the very early transcribed baculovirus gene PE-38. J Virol 1991; 65:805–812 [View Article][PubMed]
    [Google Scholar]
  46. Guarino LA, Xu B, Jin J, Dong W. A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol 1998; 72:7985–7991 [View Article][PubMed]
    [Google Scholar]
  47. Thiem SM, Miller LK. Identification, sequence, and transcriptional mapping of the major capsid protein gene of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol 1989; 63:2008–2018 [View Article][PubMed]
    [Google Scholar]
  48. Lung O, Westenberg M, Vlak JM, Zuidema D, Blissard GW. Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV gp64. J Virol 2002; 76:5729–5736 [View Article][PubMed]
    [Google Scholar]
  49. Rohrmann GF. Polyhedrin structure. J Gen Virol 1986; 67:1499–1513 [View Article][PubMed]
    [Google Scholar]
  50. Winstanley D, Crook NE. Replication of Cydia pomonella granulosis virus in cell cultures. J Gen Virol 1993; 74:1599–1609 [View Article][PubMed]
    [Google Scholar]
  51. Granados RR, Lawler KA. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 1981; 108:297–308 [View Article][PubMed]
    [Google Scholar]
  52. Washburn JO, Chan EY, Volkman LE, Aumiller JJ, Jarvis DL. Early synthesis of budded virus envelope fusion protein gp64 enhances Autographa californica multicapsid nucleopolyhedrovirus virulence in orally infected Heliothis virescens . J Virol 2003; 77:280–290 [View Article][PubMed]
    [Google Scholar]
  53. Ohkawa T, Volkman LE, Welch MD. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol 2010; 190:187–195 [View Article][PubMed]
    [Google Scholar]
  54. Eberle KE, Asser-Kaiser S, Sayed SM, Nguyen HT, Jehle JA. Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12. J Invertebr Pathol 2008; 98:293–298 [View Article][PubMed]
    [Google Scholar]
  55. Yamagishi J, Burnett ED, Harwood SH, Blissard GW. The AcMNPV pp31 gene is not essential for productive AcMNPV replication or late gene transcription but appears to increase levels of most viral transcripts. Virology 2007; 365:34–47 [View Article][PubMed]
    [Google Scholar]
  56. Donly BC, Kaplanoglu E, Theilmann DA, Baldwin D, Sieminska E et al. MacoNPV baculovirus midgut-specific gene expression during infection of the bertha armyworm, Mamestra configurata . Virology 2016; 499:1–8 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001566
Loading
/content/journal/jgv/10.1099/jgv.0.001566
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed