1887

Abstract

Coronavirus protease nsp5 (M, 3CL) remains a primary target for coronavirus therapeutics due to its indispensable and conserved role in the proteolytic processing of the viral replicase polyproteins. In this review, we discuss the diversity of known coronaviruses, the role of nsp5 in coronavirus biology, and the structure and function of this protease across the diversity of known coronaviruses, and evaluate past and present efforts to develop inhibitors to the nsp5 protease with a particular emphasis on new and mostly unexplored potential targets of inhibition. With the recent emergence of pandemic SARS-CoV-2, this review provides novel and potentially innovative strategies and directions to develop effective therapeutics against the coronavirus protease nsp5.

Keyword(s): 3CLpro , Coronavirus , inhibitors , nsp5 and protease
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001558
2021-01-28
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/102/3/vir001558.html?itemId=/content/journal/jgv/10.1099/jgv.0.001558&mimeType=html&fmt=ahah

References

  1. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res 2018; 100:163–188
    [Google Scholar]
  2. Walsh EE, Shin JH, Falsey AR. Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations. J Infect Dis 2013; 208:1634–1642 [View Article]
    [Google Scholar]
  3. van der Hoek L, Sure K, Ihorst G, Stang A, Pyrc K et al. Croup is associated with the novel coronavirus NL63. PLoS Med 2005; 2:e240 [View Article]
    [Google Scholar]
  4. Nickbakhsh S, Ho A, Marques DFP, McMenamin J, Gunson RN et al. Epidemiology of seasonal coronaviruses: establishing the context for the emergence of coronavirus disease 2019. J Infect Dis 2020; 222:17–25 [View Article]
    [Google Scholar]
  5. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009; 7:439–450 [View Article]
    [Google Scholar]
  6. Zhong NS, Zheng BJ, Li YM, Xie ZH et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, people's Republic of China, in February, 2003. Lancet 2003; 362:1353–1358 [View Article][PubMed]
    [Google Scholar]
  7. R-H X, J-F H, Evans MR, Peng G-W, Field HE et al. Epidemiologic clues to SARS origin in China. Emerg Infect Dis 2004; 10:1030–1037
    [Google Scholar]
  8. Lee N, Hui D, Wu A, Chan P, Cameron P et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348:1986–1994 [View Article]
    [Google Scholar]
  9. Cao W-C, de Vlas SJ, Richardus JH. The severe acute respiratory syndrome epidemic in mainland China dissected. Infect Dis Rep 2011; 3:2 [View Article][PubMed]
    [Google Scholar]
  10. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367:1814–1820 [View Article]
    [Google Scholar]
  11. Choi WS, Kang C-I, Kim Y, Choi J-P, Joh JS et al. Clinical presentation and outcomes of middle East respiratory syndrome in the Republic of Korea. Infect Chemother 2016; 48:118–126 [View Article]
    [Google Scholar]
  12. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. The Lancet 2015; 386:995–1007 [View Article]
    [Google Scholar]
  13. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14:523–534 [View Article]
    [Google Scholar]
  14. Drosten C, Meyer B, Müller MA, Corman VM, Al-Masri M et al. Transmission of MERS-Coronavirus in household contacts. N Engl J Med 2014; 371:828–835 [View Article]
    [Google Scholar]
  15. Coleman CM, Frieman MB. Coronaviruses: important emerging human pathogens. J Virol 2014; 88:5209–5212 [View Article]
    [Google Scholar]
  16. Zhu N, Zhang D, Wang W, Li X, Yang B et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382:727–733 [View Article]
    [Google Scholar]
  17. Li Q, Guan X, Wu P, Wang X, Zhou L et al. Early transmission dynamics in Wuhan, China, of novel Coronavirus–Infected pneumonia. N Engl J Med 2020; 382:1199–1207 [View Article]
    [Google Scholar]
  18. Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A et al. World Health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020; 76:71–76 [View Article]
    [Google Scholar]
  19. Chu H, Chan JF-W, Yuen TT-T, Shuai H, Yuan S et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. The Lancet Microbe 2020; 1:e14–e23 [View Article]
    [Google Scholar]
  20. Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; coronavirus Disease-19). Clin Exp Pediatr 2020; 63:119–124 [View Article]
    [Google Scholar]
  21. Chen J. Pathogenicity and transmissibility of 2019-nCoV—A quick overview and comparison with other emerging viruses. Microbes Infect 2020; 22:69–71 [View Article]
    [Google Scholar]
  22. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. J Med Virol 2020
    [Google Scholar]
  23. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109:102433 [View Article]
    [Google Scholar]
  24. Wang D, Hu B, Hu C, Zhu F, Liu X et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus–Infected pneumonia in Wuhan, China. JAMA 2020; 323:1061–1069 [View Article]
    [Google Scholar]
  25. Biswas A, Bhattacharjee U, Chakrabarti AK, Tewari DN, Banu H et al. Emergence of novel coronavirus and COVID-19: whether to stay or die out?. Crit Rev Microbiol 20201–12
    [Google Scholar]
  26. De Sabato L, Lelli D, Faccin F, Canziani S, Di Bartolo I et al. Full genome characterization of two novel Alpha-coronavirus species from Italian bats. Virus Res 2019; 260:60–66 [View Article]
    [Google Scholar]
  27. Zhang Y-Z, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 2020; 181:223–227 [View Article]
    [Google Scholar]
  28. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579:270–273 [View Article]
    [Google Scholar]
  29. Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M et al. A global treatments for coronaviruses including COVID-19. J Cell Physiol 2020
    [Google Scholar]
  30. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19:149–150 [View Article]
    [Google Scholar]
  31. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282:1–23
    [Google Scholar]
  32. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 2003; 77:8801–8811 [View Article]
    [Google Scholar]
  33. Collins AR, Knobler RL, Powell H, Buchmeier MJ. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology 1982; 119:358–371 [View Article]
    [Google Scholar]
  34. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 1992; 357:420–422 [View Article]
    [Google Scholar]
  35. Wu K, Li W, Peng G, Li F. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc Natl Acad Sci U S A 2009; 106:19970–19974 [View Article]
    [Google Scholar]
  36. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426:450–454 [View Article]
    [Google Scholar]
  37. Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495:251–254 [View Article]
    [Google Scholar]
  38. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94: [View Article]
    [Google Scholar]
  39. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011; 85:4122–4134 [View Article]
    [Google Scholar]
  40. Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 1989; 57:537–547 [View Article]
    [Google Scholar]
  41. Lee H-J, Shieh C-K, Gorbalenya AE, Koonin EV, La Monica N et al. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 1991; 180:567–582 [View Article]
    [Google Scholar]
  42. Ziebuhr J, Gorbalenya AE, Snijder EJ. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000; 81:853–879 [View Article]
    [Google Scholar]
  43. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 1989; 17:4847–4861 [View Article]
    [Google Scholar]
  44. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol 2018; 419:1–42
    [Google Scholar]
  45. Knoops K, Kikkert M, Worm SHEvanden, Zevenhoven-Dobbe JC, van der Meer Y et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 2008; 6:e226 [View Article]
    [Google Scholar]
  46. Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio 2013; 4: [View Article]
    [Google Scholar]
  47. Gadlage MJ, Sparks JS, Beachboard DC, Cox RG, Doyle JD et al. Murine hepatitis virus nonstructural protein 4 regulates virus-induced membrane modifications and replication complex function. J Virol 2010; 84:280–290 [View Article]
    [Google Scholar]
  48. Beachboard DC, Anderson-Daniels JM, Denison MR. Mutations across murine hepatitis virus NSP4 alter virus fitness and membrane modifications. J Virol 2015; 89:2080–2089 [View Article]
    [Google Scholar]
  49. Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol 2007; 81:20–29 [View Article]
    [Google Scholar]
  50. Vennema H, Heijnen L, Zijderveld A, Horzinek MC, Spaan WJ. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J Virol 1990; 64:339–346 [View Article]
    [Google Scholar]
  51. Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the rER to the Golgi complex requires only one vesicular transport step. J Cell Biol 1994; 124:55–70 [View Article]
    [Google Scholar]
  52. Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol 1984; 33:281–293
    [Google Scholar]
  53. de Haan CAM, Rottier PJM. Molecular interactions in the assembly of coronaviruses. Adv Virus Res 2005; 64:165–230
    [Google Scholar]
  54. Siu YL, Teoh KT, Lo J, Chan CM, Kien F et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol 2008; 82:11318–11330 [View Article]
    [Google Scholar]
  55. Gallagher TM, Buchmeier MJ, Perlman S. Cell receptor-independent infection by a neurotropic murine coronavirus. Virology 1992; 191:517–522 [View Article]
    [Google Scholar]
  56. Sparks JS, Donaldson EF, Lu X, Baric RS, Denison MR. A novel mutation in murine hepatitis virus NSP5, the viral 3C-like proteinase, causes temperature-sensitive defects in viral growth and protein processing. J Virol 2008; 82:5999–6008 [View Article]
    [Google Scholar]
  57. Lu Y, Lu X, Denison MR. Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol 1995; 69:3554–3559 [View Article]
    [Google Scholar]
  58. Lu Y, Denison MR. Determinants of mouse hepatitis virus 3C-like proteinase activity. Virology 1997; 230:335–342 [View Article]
    [Google Scholar]
  59. Baker SC, Yokomori K, Dong S, Carlisle R, Gorbalenya AE et al. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 1993; 67:6056–6063 [View Article]
    [Google Scholar]
  60. Chen Z, Wang Y, Ratia K, Mesecar AD, Wilkinson KD et al. Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. J Virol 2007; 81:6007–6018 [View Article]
    [Google Scholar]
  61. Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC et al. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A 2006; 103:5717–5722 [View Article]
    [Google Scholar]
  62. Mielech AM, Chen Y, Mesecar AD, Baker SC. Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res 2014; 194:184–190 [View Article]
    [Google Scholar]
  63. Stobart CC, Sexton NR, Munjal H, Lu X, Molland KL et al. Chimeric exchange of coronavirus NSP5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J Virol 2013; 87:12611–12618 [View Article]
    [Google Scholar]
  64. Lu X, Lu Y, Denison MR. Intracellular and in vitro-translated 27-kDa proteins contain the 3C-like proteinase activity of the coronavirus MHV-A59. Virology 1996; 222:375–382 [View Article]
    [Google Scholar]
  65. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003; 300:1763–1767 [View Article]
    [Google Scholar]
  66. Xue X, Yu H, Yang H, Xue F, Wu Z et al. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol 2008; 82:2515–2527 [View Article]
    [Google Scholar]
  67. Grum-Tokars V, Ratia K, Begaye A, Baker SC, Mesecar AD. Evaluating the 3C-like protease activity of SARS-coronavirus: recommendations for standardized assays for drug discovery. Virus Res 2008; 133:63–73 [View Article]
    [Google Scholar]
  68. Hsu M-F, Kuo C-J, Chang K-T, Chang H-C, Chou C-C et al. Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem 2005; 280:31257–31266 [View Article]
    [Google Scholar]
  69. Hegyi A, Ziebuhr J. Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 2002; 83:595–599 [View Article]
    [Google Scholar]
  70. Hegyi A, Friebe A, Gorbalenya AE, Ziebuhr J. Mutational analysis of the active centre of coronavirus 3C-like proteases. J Gen Virol 2002; 83:581–593 [View Article]
    [Google Scholar]
  71. Shi J, Song J. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J 2006; 273:1035–1045 [View Article]
    [Google Scholar]
  72. Shi J, Sivaraman J, Song J. Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease. J Virol 2008; 82:4620–4629 [View Article]
    [Google Scholar]
  73. Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. Embo J 2002; 21:3213–3224 [View Article]
    [Google Scholar]
  74. Bacha U, Barrila J, Gabelli SB, Kiso Y, Mario Amzel L et al. Development of broad-spectrum halomethyl ketone inhibitors against coronavirus main protease 3CLpro . Chem Biol Drug Des 2008; 72:34–49 [View Article]
    [Google Scholar]
  75. Tomar S, Johnston ML, John SES, Osswald HL, Nyalapatla PR et al. Ligand-Induced dimerization of middle East respiratory syndrome (MERS) coronavirus NSP5 protease (3CLpro) implications for NSP5 regulation and the development of antivirals. J Biol Chem 2015; 290:19403–19422
    [Google Scholar]
  76. Cheng S-C, Chang G-G, Chou C-Y. Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease. Biophys J 2010; 98:1327–1336 [View Article]
    [Google Scholar]
  77. Chen S, Chen L, Tan J, Chen J, Du L et al. Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations. J Biol Chem 2005; 280:164–173
    [Google Scholar]
  78. Zhang L, Lin D, Sun X, Curth U, Drosten C et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020; 368:409–412 [View Article]
    [Google Scholar]
  79. Kanjanahaluethai A, Baker SC. Identification of mouse hepatitis virus papain-like proteinase 2 activity. J Virol 2000; 74:7911–7921 [View Article]
    [Google Scholar]
  80. Donaldson EF, Graham RL, Sims AC, Denison MR, Baric RS. Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing. J Virol 2007; 81:7086–7098 [View Article]
    [Google Scholar]
  81. Li C, Qi Y, Teng X, Yang Z, Wei P et al. Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase. J Biol Chem 2010; 285:28134–28140 [View Article]
    [Google Scholar]
  82. Chen S, Jonas F, Shen C, Higenfeld R, Higenfeld R. Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein Cell 2010; 1:59–74 [View Article]
    [Google Scholar]
  83. Krichel B, Falke S, Hilgenfeld R, Redecke L, Uetrecht C. Processing of the SARS-CoV pp1a/ab nsp7–10 region. Biochem J 2020; 477:1009–1019 [View Article]
    [Google Scholar]
  84. Deming DJ, Graham RL, Denison MR, Baric RS. Processing of open reading frame 1A replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. J Virol 2007; 81:10280–10291 [View Article]
    [Google Scholar]
  85. Stobart CC, Lee AS, Lu X, Denison MR. Temperature-sensitive mutants and revertants in the coronavirus nonstructural protein 5 protease (3CLpro) define residues involved in long-distance communication and regulation of protease activity. J Virol 2012; 86:4801–4810 [View Article]
    [Google Scholar]
  86. Stokes HL, Baliji S, Hui CG, Sawicki SG, Baker SC et al. A new cistron in the murine hepatitis virus replicase gene. J Virol 2010; 84:10148–10158 [View Article]
    [Google Scholar]
  87. Ahn D-G, Shin H-J, Kim M-H, Lee S, Kim H-S et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol 2020; 30:313–324 [View Article]
    [Google Scholar]
  88. Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: the current state of play. Paediatr Respir Rev 2020
    [Google Scholar]
  89. Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung S-H. An overview of severe acute respiratory Syndrome–Coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem 2016; 59:6595–6628 [View Article]
    [Google Scholar]
  90. Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020; 25:668–688 [View Article]
    [Google Scholar]
  91. Khan SA, Zia K, Ashraf S, Uddin R, Ul-Haq Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J Biomol Struct Dyn 2020; 0:1–10
    [Google Scholar]
  92. Kanhed AM, Patel DV, Teli DM, Patel NR, Chhabria MT et al. Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach. Mol Divers 2020; 10: [View Article]
    [Google Scholar]
  93. C-Y W, King K-Y, Kuo C-J, Fang J-M, Y-T W et al. Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease. Chemistry & Biology 2006; 13:261–268
    [Google Scholar]
  94. Deng X, StJohn SE, Osswald HL, O'Brien A, Banach BS et al. Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. J Virol 2014; 88:11886–11898 [View Article]
    [Google Scholar]
  95. Ghosh AK, Gong G, Grum-Tokars V, Mulhearn DC, Baker SC et al. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorg Med Chem Lett 2008; 18:5684–5688 [View Article]
    [Google Scholar]
  96. Kilianski A, Mielech AM, Deng X, Baker SC. Assessing activity and inhibition of middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors. J Virol 2013; 87:11955–11962 [View Article]
    [Google Scholar]
  97. Agnihothram S, Yount BL, Donaldson EF, Huynh J, Menachery VD et al. A mouse model for Betacoronavirus subgroup 2C using a bat coronavirus strain HKU5 variant. mBio 2014; 5: [View Article]
    [Google Scholar]
  98. Ghosh AK, Xi K, Grum-Tokars V, Xu X, Ratia K et al. Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors. Bioorg Med Chem Lett 2007; 17:5876–5880 [View Article]
    [Google Scholar]
  99. Ghosh AK, Xi K, Ratia K, Santarsiero BD, Fu W et al. Design and synthesis of peptidomimetic severe acute respiratory syndrome chymotrypsin-like protease inhibitors. J Med Chem 2005; 48:6767–6771 [View Article]
    [Google Scholar]
  100. Matthews DA, Patick AK, Baker RO, Brothers MA, Dragovich PS et al. In vitro antiviral activity of human rhinovirus 3c protease inhibitors against the SARS coronavirus [Internet]. learning from SARS: preparing for the next disease outbreak: workshop summary. National Academies Press 2004
    [Google Scholar]
  101. Shie J-J, Fang J-M, Kuo T-H, Kuo C-J, Liang P-H et al. Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic α,β-unsaturated esters. Bioorg Med Chem 2005; 13:5240–5252 [View Article]
    [Google Scholar]
  102. Kumar V, Shin JS, Shie J-J, Ku KB, Kim C et al. Identification and evaluation of potent middle East respiratory syndrome coronavirus (MERS-CoV) 3CL pro inhibitors. Antiviral Res 2017; 141:101–106 [View Article]
    [Google Scholar]
  103. Galasiti Kankanamalage AC, Kim Y, Damalanka VC, Rathnayake AD, Fehr AR et al. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur J Med Chem 2018; 150:334–346 [View Article][PubMed]
    [Google Scholar]
  104. Cui W, Cui S, Chen C, Chen X, Wang Z et al. The crystal structure of main protease from mouse hepatitis virus A59 in complex with an inhibitor. Biochem Biophys Res Commun 2019; 511:794–799 [View Article][PubMed]
    [Google Scholar]
  105. Akaji K, Konno H, Mitsui H, Teruya K, Shimamoto Y et al. Structure-Based design, synthesis, and evaluation of peptide-mimetic SARS 3CL protease inhibitors. J Med Chem 2011; 54:7962–7973 [View Article]
    [Google Scholar]
  106. Zhang L, Lin D, Kusov Y, Nian Y, Ma Q et al. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J Med Chem 2020; 63:4562–4578 [View Article][PubMed]
    [Google Scholar]
  107. Akaji K, Konno H, Mitsui H, Teruya K, Shimamoto Y et al. Structure-based design, synthesis, and evaluation of peptide-mimetic SARS 3CL protease inhibitors. J Med Chem 2011; 54:7962–7973 [View Article][PubMed]
    [Google Scholar]
  108. Akaji K, Konno H, Onozuka M, Makino A, Saito H et al. Evaluation of peptide-aldehyde inhibitors using R188I mutant of SARS 3CL protease as a proteolysis-resistant mutant. Bioorg Med Chem 2008; 16:9400–9408 [View Article][PubMed]
    [Google Scholar]
  109. Shimamoto Y, Hattori Y, Kobayashi K, Teruya K, Sanjoh A et al. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Bioorg Med Chem 2015; 23:876–890 [View Article][PubMed]
    [Google Scholar]
  110. Konno H, Wakabayashi M, Takanuma D, Saito Y, Akaji K. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease. Bioorg Med Chem 2016; 24:1241–1254 [View Article][PubMed]
    [Google Scholar]
  111. Konno H, Onuma T, Nitanai I, Wakabayashi M, Yano S et al. Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor. Bioorg Med Chem Lett 2017; 27:2746–2751 [View Article][PubMed]
    [Google Scholar]
  112. Chen L, Gui C, Luo X, Yang Q, Günther S et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol 2005; 79:7095–7103 [View Article][PubMed]
    [Google Scholar]
  113. Jacobs J, Grum-Tokars V, Zhou Y, Turlington M, Saldanha SA et al. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J Med Chem 2013; 56:534–546 [View Article][PubMed]
    [Google Scholar]
  114. Turlington M, Chun A, Tomar S, Eggler A, Grum-Tokars V et al. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg Med Chem Lett 2013; 23:6172–6177 [View Article][PubMed]
    [Google Scholar]
  115. Sparks JS, Donaldson EF, Lu X, Baric RS, Denison MR. A novel mutation in murine hepatitis virus NSP5, the viral 3C-like proteinase, causes temperature-sensitive defects in viral growth and protein processing. J Virol 2008; 82:5999–6008 [View Article][PubMed]
    [Google Scholar]
  116. Boschelli F, Golas JM, Petersen R, Lau V, Chen L et al. A cell-based screen for inhibitors of protein folding and degradation. Cell Stress Chaperones 2010; 15:913–927 [View Article][PubMed]
    [Google Scholar]
  117. Muramatsu T, Takemoto C, Kim Y-T, Wang H, Nishii W et al. SARS-Cov 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc Natl Acad Sci U S A 2016; 113:12997–13002 [View Article]
    [Google Scholar]
  118. Gimeno A, Mestres-Truyol J, Ojeda-Montes MJ, Macip G, Saldivar-Espinoza B et al. Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition. Int J Mol Sci 2020; 21:3793 [View Article]
    [Google Scholar]
  119. Jo S, Kim S, Shin DH, Kim M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35:145–151 [View Article]
    [Google Scholar]
  120. Boggetto N, Reboud-Ravaux M. Dimerization inhibitors of HIV-1 protease. Biol Chem 2002; 383:1321–1324 [View Article]
    [Google Scholar]
  121. Schramm HJ, Nakashima H, Schramm W, Wakayama H, Yamamoto N. HIV-1 reproduction is inhibited by peptides derived from the N- and C-termini of HIV-1 protease. Biochem Biophys Res Commun 1991; 179:847–851 [View Article][PubMed]
    [Google Scholar]
  122. Zutshi R, Franciskovich J, Shultz M, Schweitzer B, Bishop P et al. Targeting the Dimerization Interface of HIV-1 Protease: Inhibition with Cross-Linked Interfacial Peptides. J Am Chem Soc 1997; 119:4841–4845 [View Article]
    [Google Scholar]
  123. Goyal B, Goyal D. Targeting the dimerization of the main protease of coronaviruses: a potential broad-spectrum therapeutic strategy. ACS Comb Sci 2020; 22:297–305 [View Article]
    [Google Scholar]
  124. Ding L, Zhang X-X, Wei P, Fan K, Lai L. The interaction between severe acute respiratory syndrome coronavirus 3C-like proteinase and a dimeric inhibitor by capillary electrophoresis. Anal Biochem 2005; 343:159–165 [View Article]
    [Google Scholar]
  125. Wei P, Fan K, Chen H, Ma L, Huang C et al. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochem Biophys Res Commun 2006; 339:865–872 [View Article]
    [Google Scholar]
  126. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583:459–468 [View Article]
    [Google Scholar]
  127. von BA, Teepe C, Simpson JC, Pepperkok R, Friedel CC et al. Analysis of Intraviral protein-protein interactions of the SARS coronavirus ORFeome. Plos One. 2007; 2:e459
    [Google Scholar]
  128. Song J, Liu Y, Gao P, Hu Y, Chai Y et al. Mapping the nonstructural protein interaction network of porcine reproductive and respiratory syndrome virus. J Virol 2018; 92: [View Article]
    [Google Scholar]
  129. Zhu X, Fang L, Wang D, Yang Y, Chen J et al. Porcine deltacoronavirus NSP5 inhibits interferon-β production through the cleavage of NEMO. Virology 2017; 502:33–38 [View Article]
    [Google Scholar]
  130. Chen S, Tian J, Li Z, Kang H, Zhang J et al. Feline infectious peritonitis virus NSP5 inhibits type I interferon production by cleaving NEMO at multiple sites. Viruses 2019; 12:43 [View Article]
    [Google Scholar]
  131. Wang D, Fang L, Shi Y, Zhang H, Gao L et al. Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO. J Virol 2016; 90:2090–2101 [View Article]
    [Google Scholar]
  132. Zhu X, Wang D, Zhou J, Pan T, Chen J et al. Porcine deltacoronavirus NSP5 antagonizes type I interferon signaling by cleaving STAT2. J Virol 2017; 91: [View Article]
    [Google Scholar]
  133. Moustaqil M, Ollivier E, Chiu H-P, Tol SV, Rudolffi-Soto P et al. SARS-CoV-2 proteases cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species and the search for reservoir hosts. bioRxiv 20202020.06.05.135699
    [Google Scholar]
  134. Erlanson DA, McDowell RS, O’Brien T. Fragment-based drug discovery. J Med Chem 2004; 47:3463–3482
    [Google Scholar]
  135. Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 2007; 6:211–219 [View Article]
    [Google Scholar]
  136. Perryman AL, Zhang Q, Soutter HH, Rosenfeld R, McRee DE et al. Fragment-based screen against HIV protease. Chem Biol Drug Des 2010; 75:257–268 [View Article]
    [Google Scholar]
  137. Rees DC, Congreve M, Murray CW, Carr R. Fragment-based lead discovery. Nat Rev Drug Discov 2004; 3:660–672 [View Article]
    [Google Scholar]
  138. Saalau-Bethell SM, Woodhead AJ, Chessari G, Carr MG, Coyle J et al. Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function. Nat Chem Biol 2012; 8:920–925 [View Article]
    [Google Scholar]
  139. Su H, Yao S, Zhao W, Li M, Liu J et al. Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. bioRxiv 20202020.04.13.038687
    [Google Scholar]
  140. Lee C-C, Kuo C-J, Ko T-P, Hsu M-F, Tsui Y-C et al. Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. J Biol Chem 2009; 284:7646–7655 [View Article]
    [Google Scholar]
  141. Wang F, Chen C, Tan W, Yang K, Yang H. Structure of main protease from human coronavirus NL63: insights for wide spectrum Anti-Coronavirus drug design. Sci Rep 2016; 6: [View Article]
    [Google Scholar]
  142. Zhao Q, Li S, Xue F, Zou Y, Chen C et al. Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. J Virol 2008; 82:8647–8655 [View Article]
    [Google Scholar]
  143. Berry M, Fielding B, Gamieldien J. Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies. BMC Struct Biol. 2015; Apr 28;15:8
    [Google Scholar]
  144. Deng X, StJohn SE, Osswald HL, O'Brien A, Banach BS et al. Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. J Virol 2014; 88:11886–11898 [View Article]
    [Google Scholar]
  145. Kumar V, Shin JS, Shie J-J, Ku KB, Kim C et al. Identification and evaluation of potent middle East respiratory syndrome coronavirus (MERS-CoV) 3CL pro inhibitors. Antiviral Res 2017; 141:101–106 [View Article]
    [Google Scholar]
  146. Yin W, Mao C, Luan X, Shen D-D, Shen Q et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368:1499–1504 [View Article]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.001558
Loading
/content/journal/jgv/10.1099/jgv.0.001558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error