1887

Abstract

The alpaca is a very important social and economic resource for the production of fibre and meat for Andean communities. Peru is the main producer of alpacas. Group A rotavirus (RVA) has been sporadically detected in alpacas. In this study, a total of 1423 faecal samples from alpacas from different locations of the Puno department in Peru were collected and analysed by an antigen-capture ELISA in order to detect RVA. Four per cent of the samples were RVA-positive (57/1423). The genotype constellation of three selected alpaca RVA strains were G3/8 P[1/14]-I2-R2/5-C2/3-M2/3-A17-N2/3-T6-E3-H3. Two of the analysed strains presented a bovine-like genotype constellation, whereas the third strain presented six segments belonging to the AU-1-like genogroup (G3, M3, C3, N3, T3 and E3), suggesting reassorting events. Monitoring of the sanitary health of juvenile alpacas is essential to reduce the rates of neonatal mortality and for the development of preventive health strategies.

Funding
This study was supported by the:
  • Agencia Nacional de Promoción Científica y Tecnológica (Award PICT Nº 38308)
    • Principle Award Recipient: VivianaParreno
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001501
2021-04-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/102/4/jgv001501.html?itemId=/content/journal/jgv/10.1099/jgv.0.001501&mimeType=html&fmt=ahah

References

  1. Kadwell M, Fernandez M, Stanley HF, Baldi R, Wheeler JC et al. Genetic analysis reveals the wild ancestors of the llama and the alpaca. Proc Biol Sci 2001; 268:2575–2584 [View Article][PubMed]
    [Google Scholar]
  2. Rosadio R, Maturrano L, Pérez D, Luna L. El complejo entérico neonatal en alpacas andinas [Neonatal enteric complex in Andean alpacas]. Rev Inv Vet Perú 2012; 23:261–271
    [Google Scholar]
  3. Rojas M, Manchego A, Rocha CB, Fornells LA, Silva RC et al. Outbreak of diarrhea among preweaning alpacas (Vicugna pacos) in the southern Peruvian highland. J Infect Dev Ctries 2016; 10:269–274 [View Article][PubMed]
    [Google Scholar]
  4. Marcoppido G, Olivera V, Bok K, Parreño V. Study of the kinetics of antibodies titres against viral pathogens and detection of rotavirus and parainfluenza 3 infections in captive crias of guanacos (Lama guanicoe). Transbound Emerg Dis 2011; 58:37–43 [View Article][PubMed]
    [Google Scholar]
  5. Parreño V, Marcoppido G. Estudio de la sanidad en camélidos: Avances a partir de la obtención de muestras de camélidos silvestres. Investigación, conservación y manejo de vicuñas Argentina, Vilá, B: Proyecto MACS – Universidad de Luján; 2006 pp 147–164
    [Google Scholar]
  6. Marcoppido G, Parreño V, Vilá B. Antibodies to pathogenic livestock viruses in a wild vicuña (Vicugna vicugna) population in the Argentinean Andean altiplano. J Wildl Dis 2010; 46:608–614 [View Article][PubMed]
    [Google Scholar]
  7. Marin RE, Rodriguez D, Parreño V. Prevalencia Sanitaria en Llamas (Lama glama) de la Provincia de Jujuy. Argentina. Rev Vet argentina Dir Prov Desarro Ganad Gob la Prov Jujuy Minist Prod Ley Ovina Nro 25422Proyecto FAO N 2552/ 2009; 07:1–25
    [Google Scholar]
  8. Puntel M, Fondevila NA, Viera JB, O'Donnell VK, Marcovecchio JF et al. Serological Survey of Viral Antibodies in Llamas (Lama glama) in Argentina. J Vet Med Series B 1999; 46:157–162 [View Article]
    [Google Scholar]
  9. Rivera H, Madewell BR, Ameghino E. Serologic survey of viral antibodies in the Peruvian alpaca (Lama pacos). Am J Vet Res 1987; 48:189–191[PubMed]
    [Google Scholar]
  10. Barbieri ES, Rodriguez D V, Marín RE, Setti W, Romero S. Relevamiento serológico de anticuerpos contra enfermedades virales de interés sanitario en llamas (Lama glama) de la provincia. Rev Argent Microbiol 2014; 46:53–57
    [Google Scholar]
  11. Berrios PE. Rotavirus en pequeños ruminantes del zoologico nacional de Santiago.
  12. Cebra CK, Mattson DE, Baker RJ, Sonn RJ, Dearing PL. Potential pathogens in feces from unweaned llamas and alpacas with diarrhea. J Am Vet Med Assoc 2003; 223:1806–1808 [View Article][PubMed]
    [Google Scholar]
  13. López W, Chamorro M, Garmendia AE. Rapid detection of rotavirus and coronavirus in Alpaca Crias (Vicugna pacos) with diarrhea in the Cusco region. Peru 2011
    [Google Scholar]
  14. Parreño V, Bok K, Fernandez F, Gomez J. Molecular characterization of the first isolation of rotavirus in guanacos (Lama guanicoe). Arch Virol 2004; 149:2465–2471 [View Article][PubMed]
    [Google Scholar]
  15. Parreño V, Constantini V, Cheetham S, Blanco Viera J, Saif LJ et al. First isolation of rotavirus associated with neonatal diarrhoea in guanacos (Lama guanicoe) in the Argentinean Patagonia region. J Vet Med B Infect Dis Vet Public Health 2001; 48:713–720 [View Article][PubMed]
    [Google Scholar]
  16. Matthijnssens J, Potgieter CA, Ciarlet M, Parreño V, Martella V et al. Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla?. J Virol 2009; 83:2917–2929 [View Article][PubMed]
    [Google Scholar]
  17. Rojas M, Gonçalves JLS, Dias HG, Manchego A, Pezo D et al. Whole-genome characterization of a Peruvian alpaca rotavirus isolate expressing a novel VP4 genotype. Vet Microbiol 2016; 196:27–35 [View Article][PubMed]
    [Google Scholar]
  18. Ciarlet M, Estes MK. Rotaviruses: basic biology, epidemiliogy and methodologies. in: Wiley J, and sons (editors). encyclopedia of environmental microbiology. New York: Britton, G. (ED.); 2002. PP. 2753–2773.
  19. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 2008; 82:3204–3219 [View Article][PubMed]
    [Google Scholar]
  20. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K et al. Uniformity of rotavirus strain nomenclature proposed by the rotavirus classification Working Group (RCWG). Arch Virol 2011; 156:1397–1413 [View Article][PubMed]
    [Google Scholar]
  21. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Bányai K et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 2008; 153:1621–1629 [View Article][PubMed]
    [Google Scholar]
  22. Badaracco A, Matthijnssens J, Romero S, Heylen E, Zeller M et al. Discovery and molecular characterization of a group A rotavirus strain detected in an Argentinean vicuña (Vicugna vicugna). Vet Microbiol 2013; 161:247–254 [View Article][PubMed]
    [Google Scholar]
  23. Garmendia AE, Lopez W, Ortega N, Chamorro MJ. Molecular characterization of rotavirus isolated from alpaca (Vicugna pacos) crias with diarrhea in the Andean Region of Cusco, Peru. Vet Microbiol 2015; 180:109–112 [View Article][PubMed]
    [Google Scholar]
  24. Rojas M, Dias HG, Gonçalves JLS, Manchego A, Rosadio R et al. Genetic diversity and zoonotic potential of rotavirus a strains in the southern Andean highlands, Peru. Transbound Emerg Dis 2019; 66:0–2 11 05 2019 [View Article][PubMed]
    [Google Scholar]
  25. Cornaglia EM, Fitjman BN, Schudel AA. Enzyme linked immunosorbent assay, immunofluorescent test and electrophoresis analysis of rotaviral RNA in the diagnosis and characterization of the bovine rotavirus. Rev Latinoam Microbiol 1989; 31:4
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  27. Maes P, Matthijnssens J, Rahman M, Van Ranst M. RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol 2009; 9:238–5 [View Article]
    [Google Scholar]
  28. Louge Uriarte EL, Badaracco A, Matthijnssens J, Zeller M, Heylen E et al. The first caprine rotavirus detected in Argentina displays genomic features resembling virus strains infecting members of the Bovidae and Camelidae. Vet Microbiol 2014; 171:189–197 [View Article][PubMed]
    [Google Scholar]
  29. Badaracco A, Garaicoechea L, Rodríguez D, Uriarte EL, Odeón A et al. Bovine rotavirus strains circulating in beef and dairy herds in Argentina from 2004 to 2010. Vet Microbiol 2012; 158:394–399 [View Article][PubMed]
    [Google Scholar]
  30. Nakagomi O, Nakagomi T, Akatani K, Ikegami N. Identification of rotavirus genogroups by RNA-RNA hybridization. Mol Cell Probes 1989; 3:251–261 [View Article][PubMed]
    [Google Scholar]
  31. Badaracco A, Garaicoechea L, Matthijnssens J, Louge Uriarte E, Odeón A et al. Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds. Infect Genet Evol 2013; 18:18–30 Epub ahead of print [View Article][PubMed]
    [Google Scholar]
  32. Parreño V, Miño S, Garaicoechea L, Barrandeguy M. Equine rotavirus in Argentinean foals: an overview. J Equine Vet Sci 2016; 39:S24 [View Article]
    [Google Scholar]
  33. Urasawa T, Taniguchi K, Kobayashi N, Mise K, Hasegawa A et al. Nucleotide sequence of VP4 and VP7 genes of a unique human rotavirus strain Mc35 with subgroup I and serotype 10 specificity. Virology 1993; 195:766–771 [View Article][PubMed]
    [Google Scholar]
  34. Siever Morales C, Paredes LD, Pezo CD. Asociación de Rotavirus y Escherichia coli fimbriada como Agentes Causales de Infecciones Entéricas en Alpacas Neonatas. Rev Investig Vet del Perú 18:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001501
Loading
/content/journal/jgv/10.1099/jgv.0.001501
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error