1887

Abstract

Type I interferon receptor knockout mice (strain A129) were assessed as a disease model of hantavirus infection. A range of infection routes (intramuscular, intraperitoneal and intranasal) were assessed using minimally passaged Seoul virus (strain Humber). Dissemination of virus to the spleen, kidney and lung was observed at 5 days after intramuscular and intraperitoneal challenge, which was resolved by day 14. In contrast, intranasal challenge of A129 mice demonstrated virus tropism to the lung, which was maintained to day 14 post-challenge. These data support the use of the A129 mouse model for future infection studies and the evaluation of interventions.

Keyword(s): Hantavirus , model , mouse and seoul virus
Funding
This study was supported by the:
  • Roger Hewson , Innovate UK , (Award 971521)
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001470
2020-07-15
2020-12-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/101/10/1047.html?itemId=/content/journal/jgv/10.1099/jgv.0.001470&mimeType=html&fmt=ahah

References

  1. Krüger DH, Schönrich G, Klempa B. Human pathogenic hantaviruses and prevention of infection. Hum Vaccin 2011; 7:685–693 [CrossRef][PubMed]
    [Google Scholar]
  2. Golden JW, Hammerbeck CD, Mucker EM, Brocato RL et al. Animal models for the study of Rodent-Borne hemorrhagic fever viruses: arenaviruses and hantaviruses. Biomed Res Int 2015; 2015:1–31 [CrossRef]
    [Google Scholar]
  3. Holmes EC, Zhang Y-Z. The evolution and emergence of hantaviruses. Curr Opin Virol 2015; 10:27–33 [CrossRef][PubMed]
    [Google Scholar]
  4. Peters CJ, Simpson GL, Levy H. Spectrum of hantavirus infection: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Annu Rev Med 1999; 50:531–545 [CrossRef][PubMed]
    [Google Scholar]
  5. Botten J, Mirowsky K, Kusewitt D, Bharadwaj M, Yee J et al. Experimental infection model for Sin Nombre hantavirus in the deer mouse (Peromyscus maniculatus). Proc Natl Acad Sci U S A 2000; 97:10578–10583 [CrossRef][PubMed]
    [Google Scholar]
  6. Medina RA, Mirowsky-Garcia K, Hutt J, Hjelle B. Ribavirin, human convalescent plasma and anti-beta3 integrin antibody inhibit infection by Sin Nombre virus in the deer mouse model. J Gen Virol 2007; 88:493–505 [CrossRef][PubMed]
    [Google Scholar]
  7. Hooper JW, Larsen T, Custer DM, Schmaljohn CS. A lethal disease model for hantavirus pulmonary syndrome. Virology 2001; 289:6–14 [CrossRef][PubMed]
    [Google Scholar]
  8. Prescott J, Safronetz D, Haddock E, Robertson S, Scott D et al. The adaptive immune response does not influence hantavirus disease or persistence in the Syrian hamster. Immunology 2013; 140:168–178 [CrossRef][PubMed]
    [Google Scholar]
  9. Safronetz D, Prescott J, Haddock E, Scott DP, Feldmann H et al. Hamster-adapted Sin Nombre virus causes disseminated infection and efficiently replicates in pulmonary endothelial cells without signs of disease. J Virol 2013; 87:4778–4782 [CrossRef][PubMed]
    [Google Scholar]
  10. Brocato RL, Hammerbeck CD, Bell TM, Wells JB, Queen LA et al. A lethal disease model for hantavirus pulmonary syndrome in immunosuppressed Syrian hamsters infected with Sin Nombre virus. J Virol 2014; 88:811–819 [CrossRef][PubMed]
    [Google Scholar]
  11. Vergote V, Laenen L, Vanmechelen B, Van Ranst M, Verbeken E et al. A lethal disease model for new world hantaviruses using immunosuppressed Syrian hamsters. PLoS Negl Trop Dis 2017; 11:e0006042 [CrossRef][PubMed]
    [Google Scholar]
  12. Safronetz D, Prescott J, Feldmann F, Haddock E, Rosenke R et al. Pathophysiology of hantavirus pulmonary syndrome in rhesus macaques. Proc Natl Acad Sci U S A 2014; 111:7114–7119 [CrossRef][PubMed]
    [Google Scholar]
  13. Jonsson CB, Figueiredo LTM, Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 2010; 23:412–441 [CrossRef][PubMed]
    [Google Scholar]
  14. Huang X, Yin H, Yan L, Wang X, Wang S et al. Epidemiologic characteristics of haemorrhagic fever with renal syndrome in mainland China from 2006 to 2010. Western Pac Surveill Response J 2012; 3:1–8 [CrossRef][PubMed]
    [Google Scholar]
  15. Kariwa H, Yoshimatsu K, Araki K, Chayama K, Kumada H et al. Detection of hantaviral antibodies among patients with hepatitis of unknown etiology in Japan. Microbiol Immunol 2000; 44:357–362 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim YS, Ahn C, Han JS, Kim S, Lee JS et al. Hemorrhagic fever with renal syndrome caused by the Seoul virus. Nephron 1995; 71:419–427 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang Y-Z, Zhang F-X, Wang J-B, Zhao Z-W, Li M-H et al. Hantaviruses in rodents and humans, inner Mongolia autonomous region, China. Emerg Infect Dis 2009; 15:885–891 [CrossRef][PubMed]
    [Google Scholar]
  18. Lie KC, Aziz MH, Kosasih H, Neal A, Halim CL et al. Case report: two confirmed cases of human Seoul virus infections in Indonesia. BMC Infect Dis 2018; 18:578 [CrossRef][PubMed]
    [Google Scholar]
  19. Macé G, Feyeux C, Mollard N, Chantegret C, Audia S et al. Severe Seoul hantavirus infection in a pregnant woman, France, October 2012. Euro Surveill 2013; 18:20464[PubMed]
    [Google Scholar]
  20. Glass GE, Watson AJ, LeDuc JW, Childs JE. Domestic cases of hemorrhagic fever with renal syndrome in the United States. Nephron 1994; 68:48–51 [CrossRef][PubMed]
    [Google Scholar]
  21. Iversson LB, da Rosa AP, Rosa MD, Lomar AV, Sasaki MdaG et al. [Human infection by Hantavirus in southern and southeastern Brazil]. Rev Assoc Med Bras 1994; 40:85–92[PubMed]
    [Google Scholar]
  22. Lin X-D, Guo W-P, Wang W, Zou Y, Hao Z-Y et al. Migration of Norway rats resulted in the worldwide distribution of Seoul hantavirus today. J Virol 2012; 86:972–981 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim GR, McKee KT. Pathogenesis of Hantaan virus infection in suckling mice: clinical, virologic, and serologic observations. Am J Trop Med Hyg 1985; 34:388–395 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhang XK, Takashima I, Mori F, Hashimoto N. Comparison of virulence between two strains of Rattus serotype hemorrhagic fever with renal syndrome (HFRS) virus in newborn rats. Microbiol Immunol 1989; 33:195–205 [CrossRef][PubMed]
    [Google Scholar]
  25. Sanada T, Kariwa H, Nagata N, Tanikawa Y, Seto T et al. Puumala virus infection in Syrian hamsters (Mesocricetus auratus) resembling hantavirus infection in natural rodent hosts. Virus Res 2011; 160:108–119 [CrossRef][PubMed]
    [Google Scholar]
  26. Kobak L, Raftery MJ, Voigt S, Kühl AA, Kilic E et al. Hantavirus-induced pathogenesis in mice with a humanized immune system. J Gen Virol 2015; 96:1258–1263 [CrossRef][PubMed]
    [Google Scholar]
  27. Yoshimatsu K, Arikawa J, Ohbora S, Itakura C. Hantavirus infection in SCID mice. J Vet Med Sci 1997; 59:863–868 [CrossRef][PubMed]
    [Google Scholar]
  28. Seto T, Nagata N, Yoshikawa K, Ichii O, Sanada T et al. Infection of Hantaan virus strain AA57 leading to pulmonary disease in laboratory mice. Virus Res 2012; 163:284–290 [CrossRef][PubMed]
    [Google Scholar]
  29. Wichmann D, Gröne H-J, Frese M, Pavlovic J, Anheier B et al. Hantaan virus infection causes an acute neurological disease that is fatal in adult laboratory mice. J Virol 2002; 76:8890–8899 [CrossRef][PubMed]
    [Google Scholar]
  30. Groen J, Gerding M, Koeman JP, Roholl PJ, van Amerongen G et al. A macaque model for hantavirus infection. J Infect Dis 1995; 172:38–44 [CrossRef][PubMed]
    [Google Scholar]
  31. Pether JV, Jones N, Lloyd G. Acute hantavirus infection. Lancet 1991; 338:1025 [CrossRef][PubMed]
    [Google Scholar]
  32. Phillips MJ, Johnson SA, Thomson RK, Pether JV. Further UK case of acute hantavirus infection. Lancet 1991; 338:1530–1531 [CrossRef][PubMed]
    [Google Scholar]
  33. McCaughey C, Montgomery WI, Twomey N, Addley M, O'Neill HJ et al. Evidence of hantavirus in wild rodents in Northern Ireland. Epidemiol Infect 1996; 117:361–366 [CrossRef][PubMed]
    [Google Scholar]
  34. Jameson LJ, Logue CH, Atkinson B, Baker N, Galbraith SE et al. The continued emergence of hantaviruses: isolation of a Seoul virus implicated in human disease, United Kingdom, October 2012. Euro Surveill 2013; 18:4–7[PubMed]
    [Google Scholar]
  35. Lloyd G, Bowen ET, Jones N, Pendry A. HFRS outbreak associated with laboratory rats in UK. Lancet 1984; 1:1175–1176 [CrossRef][PubMed]
    [Google Scholar]
  36. Taori SK, Jameson LJ, Campbell A, Drew PJ, McCarthy ND et al. UK hantavirus, renal failure, and PET rats. Lancet 2013; 381:1070 [CrossRef][PubMed]
    [Google Scholar]
  37. Jameson LJ, Taori SK, Atkinson B, Levick P, Featherstone CA et al. Pet rats as a source of hantavirus in England and Wales, 2013; 2013; 1820415[PubMed]
  38. Byers KB. Zoonotic infections from hantavirus and lymphocytic choriomeningitis virus (LCMV) associated with rodent colonies that were not experimentally infected. Applied Biosafety 2018; 23:143–152 [CrossRef]
    [Google Scholar]
  39. Duggan JM, Close R, McCann L, Wright D, Keys M et al. A seroprevalence study to determine the frequency of hantavirus infection in people exposed to wild and PET fancy rats in England. Epidemiol Infect 2017; 145:2458–2465 [CrossRef][PubMed]
    [Google Scholar]
  40. Kerins JL, Koske SE, Kazmierczak J, Austin C, Gowdy K et al. Outbreak of Seoul virus among rats and rat owners - United States and Canada, 2017. Can Commun Dis Rep 2018; 44:71–74 [CrossRef][PubMed]
    [Google Scholar]
  41. Plyusnina A, Heyman P, Baert K, Stuyck J, Cochez C et al. Genetic characterization of Seoul hantavirus originated from Norway rats (Rattus norvegicus) captured in Belgium. J Med Virol 2012; 84:1298–1303 [CrossRef][PubMed]
    [Google Scholar]
  42. Lundkvist A, Verner-Carlsson J, Plyusnina A, Forslund L, Feinstein R et al. Pet rat harbouring Seoul hantavirus in Sweden, June 2013. Euro Surveill 2013; 18:20521 [CrossRef][PubMed]
    [Google Scholar]
  43. Dupinay T, Pounder KC, Ayral F, Laaberki M-H, Marston DA et al. Detection and genetic characterization of Seoul virus from commensal brown rats in France. Virol J 2014; 11:32 [CrossRef][PubMed]
    [Google Scholar]
  44. Swanink C, Reimerink J, Gisolf J, de Vries A, Claassen M et al. Autochthonous human case of Seoul virus infection, the Netherlands. Emerg Infect Dis 2018; 24:2158–2163 [CrossRef][PubMed]
    [Google Scholar]
  45. Dowall SD, Findlay-Wilson S, Rayner E, Pearson G, Pickersgill J et al. Hazara virus infection is lethal for adult type I interferon receptor-knockout mice and may act as a surrogate for infection with the human-pathogenic Crimean-Congo hemorrhagic fever virus. J Gen Virol 2012; 93:560–564 [CrossRef][PubMed]
    [Google Scholar]
  46. Dowall SD, Graham VA, Rayner E, Hunter L, Atkinson B et al. Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice. PLoS Negl Trop Dis 2017; 11:e0005704 [CrossRef][PubMed]
    [Google Scholar]
  47. Lever MS, Piercy TJ, Steward JA, Eastaugh L, Smither SJ et al. Lethality and pathogenesis of airborne infection with filoviruses in A129 α/β -/- interferon receptor-deficient mice. J Med Microbiol 2012; 61:8–15 [CrossRef][PubMed]
    [Google Scholar]
  48. Wong G, Qiu X-G. Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential. Zool Res 2018; 39:3–14 [CrossRef][PubMed]
    [Google Scholar]
  49. Romette JL, Prat CM, Gould EA, de Lamballerie X, Charrel R et al. The European virus Archive goes global: a growing resource for research. Antiviral Res 2018; 158:127–134 [CrossRef][PubMed]
    [Google Scholar]
  50. Kramski M, Meisel H, Klempa B, Krüger DH, Pauli G et al. Detection and typing of human pathogenic hantaviruses by real-time reverse transcription-PCR and pyrosequencing. Clin Chem 2007; 53:1899–1905 [CrossRef][PubMed]
    [Google Scholar]
  51. Easterbrook JD, Zink MC, Klein SL. Regulatory T cells enhance persistence of the zoonotic pathogen Seoul virus in its reservoir host. Proc Natl Acad Sci U S A 2007; 104:15502–15507 [CrossRef][PubMed]
    [Google Scholar]
  52. Compton SR, Jacoby RO, Paturzo FX, Smith AL. Persistent seoul virus infection in Lewis rats. Arch Virol 2004; 149:1325–1339 [CrossRef][PubMed]
    [Google Scholar]
  53. Klein SL, Bird BH, Glass GE. Sex differences in immune responses and viral shedding following Seoul virus infection in Norway rats. Am J Trop Med Hyg 2001; 65:57–63 [CrossRef][PubMed]
    [Google Scholar]
  54. Kallio ER, Klingström J, Gustafsson E, Manni T, Vaheri A et al. Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment. J Gen Virol 2006; 87:2127–2134 [CrossRef][PubMed]
    [Google Scholar]
  55. Vapalahti O, Mustonen J, Lundkvist A, Henttonen H, Plyusnin A et al. Hantavirus infections in Europe. Lancet Infect Dis 2003; 3:653–661 [CrossRef][PubMed]
    [Google Scholar]
  56. St Jeor SC. Three-week incubation period for hantavirus infection. Pediatr Infect Dis J 2004; 23:974–975 [CrossRef][PubMed]
    [Google Scholar]
  57. Kamrud KI, Hooper JW, Elgh F, Schmaljohn CS. Comparison of the protective efficacy of naked DNA, DNA-based Sindbis replicon, and packaged Sindbis replicon vectors expressing hantavirus structural genes in hamsters. Virology 1999; 263:209–219 [CrossRef][PubMed]
    [Google Scholar]
  58. Hooper JW, Kamrud KI, Elgh F, Custer D, Schmaljohn CS et al. Dna vaccination with hantavirus M segment elicits neutralizing antibodies and protects against Seoul virus infection. Virology 1999; 255:269–278 [CrossRef][PubMed]
    [Google Scholar]
  59. Yoo YC, Yoshimatsu K, Yoshida R, Tamura M, Azuma I et al. Comparison of virulence between Seoul virus strain SR-11 and Hantaan virus strain 76-118 of hantaviruses in newborn mice. Microbiol Immunol 1993; 37:557–562 [CrossRef][PubMed]
    [Google Scholar]
  60. Xu X, Ruo SL, McCormick JB, Fisher-Hoch SP. Immunity to hantavirus challenge in Meriones unguiculatus induced by vaccinia-vectored viral proteins. Am J Trop Med Hyg 1992; 47:397–404 [CrossRef][PubMed]
    [Google Scholar]
  61. Fontaine DA, Davis DB. Attention to background strain is essential for metabolic research: C57BL/6 and the International knockout mouse Consortium. Diabetes 2016; 65:25–33 [CrossRef][PubMed]
    [Google Scholar]
  62. Caramello P, Canta F, Bonino L, Moiraghi C, Navone F et al. Puumala virus pulmonary syndrome in a Romanian immigrant. J Travel Med 2002; 9:326–329 [CrossRef][PubMed]
    [Google Scholar]
  63. Linderholm M, Billström A, Settergren B, Tärnvik A. Pulmonary involvement in nephropathia epidemica as demonstrated by computed tomography. Infection 1992; 20:263–266 [CrossRef][PubMed]
    [Google Scholar]
  64. Rasmuson J, Andersson C, Norrman E, Haney M, Evander M et al. Time to revise the paradigm of hantavirus syndromes? hantavirus pulmonary syndrome caused by European hantavirus. Eur J Clin Microbiol Infect Dis 2011; 30:685–690 [CrossRef][PubMed]
    [Google Scholar]
  65. Clement J, Maes P, Van Ranst M. Hemorrhagic Fever with Renal Syndrome in the New, and Hantavirus Pulmonary Syndrome in the old world: Paradi(se)gm lost or regained?. Virus Res 2014; 187:55–58 [CrossRef][PubMed]
    [Google Scholar]
  66. Lyubsky S, Gavrilovskaya I, Luft B, Mackow E. Histopathology of Peromyscus leucopus naturally infected with pathogenic NY-1 hantaviruses: pathologic markers of HPS viral infection in mice. Lab Invest 1996; 74:627–633[PubMed]
    [Google Scholar]
  67. Netski D, Thran BH, St Jeor SC. Sin Nombre virus pathogenesis in Peromyscus maniculatus . J Virol 1999; 73:585–591 [CrossRef][PubMed]
    [Google Scholar]
  68. Penttinen K, Lähdevirta J, Kekomäki R, Ziola B, Salmi A et al. Circulating immune complexes, immunoconglutinins, and rheumatoid factors in nephropathia epidemica. J Infect Dis 1981; 143:15–21 [CrossRef][PubMed]
    [Google Scholar]
  69. Cosgriff TM. Mechanisms of disease in hantavirus infection: pathophysiology of hemorrhagic fever with renal syndrome. Rev Infect Dis 1991; 13:97–107 [CrossRef][PubMed]
    [Google Scholar]
  70. Nakamura T, Yanagihara R, Gibbs CJ, Carleton Gajdusek D, Gajdusek DC. Immune spleen cell-mediated protection against fatal Hantaan virus infection in infant mice. J Infect Dis 1985; 151:691–697 [CrossRef][PubMed]
    [Google Scholar]
  71. Nagai T, Tanishita O, Takahashi Y, Yamanouchi T, Domae K et al. Isolation of haemorrhagic fever with renal syndrome virus from leukocytes of rats and virus replication in cultures of rat and human macrophages. J Gen Virol 1985; 66:1271–1278 [CrossRef][PubMed]
    [Google Scholar]
  72. Matthys VS, Cimica V, Dalrymple NA, Glennon NB, Bianco C et al. Hantavirus GnT elements mediate TRAF3 binding and inhibit RIG-I/TBK1-directed beta interferon transcription by blocking IRF3 phosphorylation. J Virol 2014; 88:2246–2259 [CrossRef][PubMed]
    [Google Scholar]
  73. Simons MJ, Gorbunova EE, Mackow ER. Unique interferon pathway regulation by the Andes virus nucleocapsid protein is conferred by phosphorylation of serine 386. J Virol 2019; 93: [CrossRef][PubMed]
    [Google Scholar]
  74. Mackow ER, Dalrymple NA, Cimica V, Matthys V, Gorbunova E et al. Hantavirus interferon regulation and virulence determinants. Virus Res 2014; 187:65–71 [CrossRef][PubMed]
    [Google Scholar]
  75. Lundkvist A, Cheng Y, Sjölander KB, Niklasson B, Vaheri A et al. Cell culture adaptation of Puumala hantavirus changes the infectivity for its natural reservoir, Clethrionomys glareolus, and leads to accumulation of mutants with altered genomic RNA S segment. J Virol 1997; 71:9515–9523 [CrossRef][PubMed]
    [Google Scholar]
  76. Burden N, Chapman K, Sewell F, Robinson V. Pioneering better science through the 3Rs: an introduction to the National centre for the replacement, refinement, and reduction of animals in research (NC3Rs). J Am Assoc Lab Anim Sci 2015; 54:198–208[PubMed]
    [Google Scholar]
  77. Essbauer SS, Krautkrämer E, Herzog S, Pfeffer M. A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses. Virol J 2011; 8:339 [CrossRef][PubMed]
    [Google Scholar]
  78. van den Broek MF, Müller U, Huang S, Zinkernagel RM, Aguet M et al. Immune defence in mice lacking type I and/or type II interferon receptors. Immunol Rev 1995; 148:5–18 [CrossRef][PubMed]
    [Google Scholar]
  79. Buttigieg KR, Dowall SD, Findlay-Wilson S, Miloszewska A, Rayner E et al. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLoS One 2014; 9:e91516 [CrossRef][PubMed]
    [Google Scholar]
  80. Mateo R, Xiao S-Y, Guzman H, Lei H, Da Rosa APAT et al. Effects of immunosuppression on West Nile virus infection in hamsters. Am J Trop Med Hyg 2006; 75:356–362 [CrossRef][PubMed]
    [Google Scholar]
  81. Schaecher SR, Stabenow J, Oberle C, Schriewer J, Buller RM et al. An immunosuppressed Syrian golden hamster model for SARS-CoV infection. Virology 2008; 380:312–321 [CrossRef][PubMed]
    [Google Scholar]
  82. Tian H, Hu S, Cazelles B, Chowell G, Gao L et al. Urbanization prolongs hantavirus epidemics in cities. Proc Natl Acad Sci U S A 2018; 115:4707–4712 [CrossRef][PubMed]
    [Google Scholar]
  83. Hooper JW, Josleyn M, Ballantyne J, Brocato R. A novel Sin Nombre virus DNA vaccine and its inclusion in a candidate pan-hantavirus vaccine against hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Vaccine 2013; 31:4314–4321 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001470
Loading
/content/journal/jgv/10.1099/jgv.0.001470
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error