1887

Abstract

The Vpx and Vpr proteins of human immunodeficiency virus type 2 (HIV-2) are important for virus replication. Although these proteins are homologous, Vpx is expressed at much higher levels than Vpr. Previous studies demonstrated that this difference results from the presence of an HHCC zinc-binding site in Vpx that is absent in Vpr. Vpx has another unique region, a poly-proline motif (PPM) of seven consecutive prolines at the C-terminus. Using PPM point mutants of Vpx, this study demonstrated that these seven consecutive prolines are critical for suppressing proteasome degradation of Vpx in the absence of Gag. Both the PPM and the zinc-binding site stabilize Vpx but do so via different mechanisms. PPM and zinc-binding site mutants overexpressed in aggregated readily, indicating that these motifs normally prevent exposure of the hydrophobic region outside the structure. Furthermore, introduction of the zinc-binding site and the PPM into Vpr increased the level of Vpr expression so that it was as high as that of Vpx. Intriguingly, HIV-2 has evolved to express Vpx at high levels and Vpr at low levels based on the presence and absence of these two motifs with distinct roles.

Keyword(s): HIV-2 , poly-proline , protein expression , Vpr , Vpx and zinc
Funding
This study was supported by the:
  • Mikako Fujita , the Japan Society for the Promotion of Science , (Award 25460570)
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001456
2020-06-17
2020-10-22
Loading full text...

Full text loading...

References

  1. Tiessen A, Pérez-Rodríguez P, Delaye-Arredondo LJ. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes. BMC Res Notes 2012; 5:85 [CrossRef][PubMed]
    [Google Scholar]
  2. Saghatelian A, Couso JP. Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol 2015; 11:909–916 [CrossRef][PubMed]
    [Google Scholar]
  3. Couso J-P, Patraquim P. Classification and function of small open reading frames. Nat Rev Mol Cell Biol 2017; 18:575–589 [CrossRef][PubMed]
    [Google Scholar]
  4. Cheek S, Krishna SS, Grishin NV. Structural classification of small, disulfide-rich protein domains. J Mol Biol 2006; 359:215–237 [CrossRef][PubMed]
    [Google Scholar]
  5. Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 2003; 31:532–550 [CrossRef][PubMed]
    [Google Scholar]
  6. Desrosiers RC, Lifson JD, Gibbs JS, Czajak SC, Howe AY et al. Identification of highly attenuated mutants of simian immunodeficiency virus. J Virol 1998; 72:1431–1437 [CrossRef][PubMed]
    [Google Scholar]
  7. Gibbs JS, Regier DA, Desrosiers RC. Construction and in vitro properties of SIVmac mutants with deletions in "nonessential" genes. AIDS Res Hum Retroviruses 1994; 10:607–616 [CrossRef][PubMed]
    [Google Scholar]
  8. Ueno F, Shiota H, Miyaura M, Yoshida A, Sakurai A et al. Vpx and Vpr proteins of HIV-2 up-regulate the viral infectivity by a distinct mechanism in lymphocytic cells. Microbes Infect 2003; 5:387–395 [CrossRef][PubMed]
    [Google Scholar]
  9. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011; 474:658–661 [CrossRef][PubMed]
    [Google Scholar]
  10. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474:654–657 [CrossRef][PubMed]
    [Google Scholar]
  11. Ayinde D, Maudet C, Transy C, Margottin-Goguet F. Limelight on two HIV/SIV accessory proteins in macrophage infection: is Vpx overshadowing Vpr?. Retrovirology 2010; 7:35 [CrossRef][PubMed]
    [Google Scholar]
  12. Fujita M, Otsuka M, Nomaguchi M, Adachi A. Multifaceted activity of HIV Vpr/Vpx proteins: the current view of their virological functions. Rev Med Virol 2010; 20:68–76 [CrossRef][PubMed]
    [Google Scholar]
  13. Romani B, Cohen EA. Lentivirus Vpr and Vpx accessory proteins usurp the cullin4-DDB1 (DCAF1) E3 ubiquitin ligase. Curr Opin Virol 2012; 2:755–763 [CrossRef][PubMed]
    [Google Scholar]
  14. Kewalramani VN, Park CS, Gallombardo PA, Emerman M. Protein stability influences human immunodeficiency virus type 2 Vpr virion incorporation and cell cycle effect. Virology 1996; 218:326–334 [CrossRef][PubMed]
    [Google Scholar]
  15. Khamsri B, Murao F, Yoshida A, Sakurai A, Uchiyama T et al. Comparative study on the structure and cytopathogenic activity of HIV Vpr/Vpx proteins. Microbes Infect 2006; 8:10–15 [CrossRef][PubMed]
    [Google Scholar]
  16. Schwefel D, Groom HCT, Boucherit VC, Christodoulou E, Walker PA et al. Structural basis of lentiviral subversion of a cellular protein degradation pathway. Nature 2014; 505:234–238 [CrossRef][PubMed]
    [Google Scholar]
  17. Yamamoto M, Koga R, Fujino H, Shimagaki K, Ciftci HI et al. Zinc-Binding site of human immunodeficiency virus 2 Vpx prevents instability and dysfunction of the protein. J Gen Virol 2017; 98:275–283 [CrossRef][PubMed]
    [Google Scholar]
  18. Koga R, Yamamoto M, Ciftci HI, Otsuka M, Fujita M. Introduction of H2C2-type zinc-binding residues into HIV-2 Vpr increases its expression level. FEBS Open Bio 2018; 8:146–153 [CrossRef][PubMed]
    [Google Scholar]
  19. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011; 1:a006841 [CrossRef][PubMed]
    [Google Scholar]
  20. Fujita M, Otsuka M, Nomaguchi M, Adachi A. Functional region mapping of HIV-2 Vpx protein. Microbes Infect 2008; 10:1387–1392 [CrossRef][PubMed]
    [Google Scholar]
  21. Zhang N, Guo H, Yang J, Liu G, Li S et al. The poly-proline tail of SIVmac Vpx provides gain of function for resistance to a cryptic proteasome-dependent degradation pathway. Virology 2017; 511:23–29 [CrossRef][PubMed]
    [Google Scholar]
  22. Miyake A, Fujita M, Fujino H, Koga R, Kawamura S et al. Poly-Proline motif in HIV-2 Vpx is critical for its efficient translation. J Gen Virol 2014; 95:179–189 [CrossRef][PubMed]
    [Google Scholar]
  23. Hasegawa A, Tsujimoto H, Maki N, Ishikawa K, Miura T et al. Genomic divergence of HIV-2 from Ghana. AIDS Res Hum Retroviruses 1989; 5:593–604 [CrossRef][PubMed]
    [Google Scholar]
  24. Ciftci HI, Fujino H, Koga R, Yamamoto M, Kawamura S et al. Mutational analysis of HIV-2 Vpx shows that proline residue 109 in the poly-proline motif regulates degradation of SAMHD1. FEBS Lett 2015; 589:1505–1514 [CrossRef][PubMed]
    [Google Scholar]
  25. Anraku K, Fukuda R, Takamune N, Misumi S, Okamoto Y et al. Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance. Biochemistry 2010; 49:5109–5116 [CrossRef][PubMed]
    [Google Scholar]
  26. Koga R, Radwan MO, Ejima T, Kanemaru Y, Tateishi H et al. A dithiol compound binds to the zinc finger protein TRAF6 and suppresses its ubiquitination. ChemMedChem 2017; 12:1935–1941 [CrossRef][PubMed]
    [Google Scholar]
  27. Yee JK, Miyanohara A, LaPorte P, Bouic K, Burns JC et al. A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 1994; 91:9564–9568 [CrossRef][PubMed]
    [Google Scholar]
  28. Kawamura M, Sakai H, Adachi A. Human immunodeficiency virus Vpx is required for the early phase of replication in peripheral blood mononuclear cells. Microbiol Immunol 1994; 38:871–878 [CrossRef][PubMed]
    [Google Scholar]
  29. Fujita M, Otsuka M, Miyoshi M, Khamsri B, Nomaguchi M et al. Vpx is critical for reverse transcription of the human immunodeficiency virus type 2 genome in macrophages. J Virol 2008; 82:7752–7756 [CrossRef][PubMed]
    [Google Scholar]
  30. Lebkowski JS, Clancy S, Calos MP. Simian virus 40 replication in adenovirus-transformed human cells antagonizes gene expression. Nature 1985; 317:169–171 [CrossRef][PubMed]
    [Google Scholar]
  31. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 1953; 97:695–710 [CrossRef][PubMed]
    [Google Scholar]
  32. Fujita M, Akari H, Sakurai A, Yoshida A, Chiba T et al. Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation. Microbes Infect 2004; 6:791–798 [CrossRef][PubMed]
    [Google Scholar]
  33. Kappes JC, Parkin JS, Conway JA, Kim J, Brouillette CG et al. Intracellular transport and virion incorporation of Vpx requires interaction with other virus type-specific components. Virology 1993; 193:222–233 [CrossRef][PubMed]
    [Google Scholar]
  34. Pancio HA, Ratner L. Human immunodeficiency virus type 2 Vpx-Gag interaction. J Virol 1998; 72:5271–5275 [CrossRef][PubMed]
    [Google Scholar]
  35. Accola MA, Bukovsky AA, Jones MS, Göttlinger HG. A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 1999; 73:9992–9999 [CrossRef][PubMed]
    [Google Scholar]
  36. Selig L, Pages JC, Tanchou V, Prévéral S, Berlioz-Torrent C et al. Interaction with the p6 domain of the gag precursor mediates incorporation into virions of Vpr and Vpx proteins from primate lentiviruses. J Virol 1999; 73:592–600 [CrossRef][PubMed]
    [Google Scholar]
  37. Chougui G, Munir-Matloob S, Matkovic R, Martin MM, Morel M et al. Hiv-2/Siv viral protein X counteracts HUSH repressor complex. Nat Microbiol 2018; 3:891–897 [CrossRef][PubMed]
    [Google Scholar]
  38. Fujita M, Nomaguchi M, Adachi A, Otsuka M. SAMHD1-Dependent and -independent functions of HIV-2/SIV Vpx protein. Front Microbiol 2012; 3:297 [CrossRef][PubMed]
    [Google Scholar]
  39. Ballana E, Esté JA. Samhd1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol 2015; 23:680–692 [CrossRef][PubMed]
    [Google Scholar]
  40. Berger G, Turpin J, Cordeil S, Tartour K, Nguyen X-N et al. Functional analysis of the relationship between Vpx and the restriction factor SAMHD1. J Biol Chem 2012; 287:41210–41217 [CrossRef][PubMed]
    [Google Scholar]
  41. Albertson DG. Gene amplification in cancer. Trends Genet 2006; 22:447–455 [CrossRef][PubMed]
    [Google Scholar]
  42. Myllykangas S, Böhling T, Knuutila S. Specificity, selection and significance of gene amplifications in cancer. Semin Cancer Biol 2007; 17:42–55 [CrossRef][PubMed]
    [Google Scholar]
  43. Matsui A, Ihara T, Suda H, Mikami H, Semba K. Gene amplification: mechanisms and involvement in cancer. Biomol Concepts 2013; 4:567–582 [CrossRef][PubMed]
    [Google Scholar]
  44. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998; 72:141–196[PubMed]
    [Google Scholar]
  45. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10:789–799 [CrossRef][PubMed]
    [Google Scholar]
  46. Izumi T, Takaori-Kondo A, Shirakawa K, Higashitsuji H, Itoh K et al. MDM2 is a novel E3 ligase for HIV-1 Vif. Retrovirology 2009; 6:1 [CrossRef][PubMed]
    [Google Scholar]
  47. Fujita M, Sakurai A, Yoshida A, Miyaura M, Koyama AH et al. Amino acid residues 88 and 89 in the central hydrophilic region of human immunodeficiency virus type 1 Vif are critical for viral infectivity by enhancing the steady-state expression of Vif. J Virol 2003; 77:1626–1632 [CrossRef][PubMed]
    [Google Scholar]
  48. Matsui Y, Shindo K, Nagata K, Yoshinaga N, Shirakawa K et al. Core binding factor β protects HIV, type 1 accessory protein viral infectivity factor from Mdm2-mediated degradation. J Biol Chem 2016; 291:24892–24899 [CrossRef][PubMed]
    [Google Scholar]
  49. Akari H, Fujita M, Kao S, Khan MA, Shehu-Xhilaga M et al. High level expression of human immunodeficiency virus type-1 Vif inhibits viral infectivity by modulating proteolytic processing of the gag precursor at the p2/nucleocapsid processing site. J Biol Chem 2004; 279:12355–12362 [CrossRef][PubMed]
    [Google Scholar]
  50. Nodder SB, Gummuluru S. Illuminating the role of Vpr in HIV infection of myeloid cells. Front Immunol 2019; 10:1606 [CrossRef][PubMed]
    [Google Scholar]
  51. Fabryova H, Strebel K. Vpr and its cellular interaction partners: R we there yet?. Cells 2019; 8:E13101310 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001456
Loading
/content/journal/jgv/10.1099/jgv.0.001456
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error