Contribution of HDAC3 to transcriptional repression by the human papillomavirus 31 E8^E2 protein Free

Abstract

Human papillomaviruses (HPV) such as HPV16 and HPV31 encode an E8^E2 protein that acts as a repressor of viral replication and transcription. E8^E2′s repression activities are mediated via the interaction with host-cell NCoR (nuclear receptor corepressor)/SMRT (silencing mediator of retinoid and thyroid receptors) corepressor complexes, which consist of NCoR, its homologue SMRT, GPS2 (G-protein pathway suppressor 2), HDAC3 (histone deacetylase 3), TBL1 (transducin b-like protein 1) and its homologue TBLR1 (TBL1-related protein 1). We now provide evidence that transcriptional repression by HPV31 E8^E2 is NCoR/SMRT-dependent but surprisingly always HDAC3-independent when analysing different HPV promoters. This is in contrast to the majority of several cellular transcription factors using NCoR/SMRT complexes whose transcriptional repression activities are both NCoR/SMRT- and HDAC3-dependent. However, NCoR/SMRT-dependent but HDAC3-independent repression has been described for specific cellular genes, suggesting that this may not be specific for HPV promoters but could be a feature of a subset of NCoR/SMRT-HDAC3 regulated genes.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award Stu 218/4-2)
    • Principle Award Recipient: Frank Stubenrauch
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001438
2020-05-18
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/101/7/751.html?itemId=/content/journal/jgv/10.1099/jgv.0.001438&mimeType=html&fmt=ahah

References

  1. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer 2017; 141:664–670 [View Article][PubMed]
    [Google Scholar]
  2. Bergvall M, Melendy T, Archambault J. The E1 proteins. Virology 2013; 445:35–56 [View Article][PubMed]
    [Google Scholar]
  3. McBride AA. The papillomavirus E2 proteins. Virology 2013; 445:57–79 [View Article][PubMed]
    [Google Scholar]
  4. Dreer M, van de Poel S, Stubenrauch F. Control of viral replication and transcription by the papillomavirus E8^E2 protein. Virus Res 2017; 231:96–102 [View Article][PubMed]
    [Google Scholar]
  5. Dreer M, Fertey J, van de Poel S, Straub E, Madlung J et al. Interaction of NCOR/SMRT repressor complexes with papillomavirus E8^E2C proteins inhibits viral replication. PLoS Pathog 2016; 12:e1005556 [View Article][PubMed]
    [Google Scholar]
  6. Isok-Paas H, Männik A, Ustav E, Ustav M. The transcription map of HPV11 in U2OS cells adequately reflects the initial and stable replication phases of the viral genome. Virol J 2015; 12:59 [View Article][PubMed]
    [Google Scholar]
  7. Kurg R, Uusen P, Võsa L, Ustav M. Human papillomavirus E2 protein with single activation domain initiates HPV18 genome replication, but is not sufficient for long-term maintenance of virus genome. Virology 2010; 408:159–166 [View Article][PubMed]
    [Google Scholar]
  8. Lace MJ, Anson JR, Thomas GS, Turek LP, Haugen TH. The E8--E2 gene product of human papillomavirus type 16 represses early transcription and replication but is dispensable for viral plasmid persistence in keratinocytes. J Virol 2008; 82:10841–10853 [View Article][PubMed]
    [Google Scholar]
  9. Sankovski E, Männik A, Geimanen J, Ustav E, Ustav M. Mapping of Betapapillomavirus human papillomavirus 5 transcription and characterization of viral-genome replication function. J Virol 2014; 88:961–973 [View Article][PubMed]
    [Google Scholar]
  10. Straub E, Dreer M, Fertey J, Iftner T, Stubenrauch F. The viral E8^E2C repressor limits productive replication of human papillomavirus 16. J Virol 2014; 88:937–947 [View Article][PubMed]
    [Google Scholar]
  11. Stubenrauch F, Hummel M, Iftner T, Laimins LA. The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol 2000; 74:1178–1186 [View Article][PubMed]
    [Google Scholar]
  12. Zobel T, Iftner T, Stubenrauch F. The papillomavirus E8-E2C protein represses DNA replication from extrachromosomal origins. Mol Cell Biol 2003; 23:8352–8362 [View Article][PubMed]
    [Google Scholar]
  13. Ammermann I, Bruckner M, Matthes F, Iftner T, Stubenrauch F. Inhibition of transcription and DNA replication by the papillomavirus E8-E2C protein is mediated by interaction with corepressor molecules. J Virol 2008; 82:5127–5136 [View Article][PubMed]
    [Google Scholar]
  14. Stubenrauch F, Zobel T, Iftner T. The E8 domain confers a novel long-distance transcriptional repression activity on the E8E2C protein of high-risk human papillomavirus type 31. J Virol 2001; 75:4139–4149 [View Article][PubMed]
    [Google Scholar]
  15. Powell MLC, Smith JA, Sowa ME, Harper JW, Iftner T et al. NCoR1 mediates papillomavirus E8;E2C transcriptional repression. J Virol 2010; 84:4451–4460 [View Article][PubMed]
    [Google Scholar]
  16. Straub E, Fertey J, Dreer M, Iftner T, Stubenrauch F. Characterization of the human papillomavirus 16 E8 promoter. J Virol 2015; 89:7304–7313 [View Article][PubMed]
    [Google Scholar]
  17. Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377:454–457 [View Article][PubMed]
    [Google Scholar]
  18. Dowell P, Ishmael JE, Avram D, Peterson VJ, Nevrivy DJ et al. Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor alpha interacting protein. J Biol Chem 1999; 274:15901–15907 [View Article][PubMed]
    [Google Scholar]
  19. Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B et al. Ligand-Independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377:397–404 [View Article][PubMed]
    [Google Scholar]
  20. Krogsdam A-M, Nielsen CAF, Neve S, Holst D, Helledie T et al. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation. Biochem J 2002; 363:157–165 [View Article][PubMed]
    [Google Scholar]
  21. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A 1998; 95:2920–2925 [View Article][PubMed]
    [Google Scholar]
  22. Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 2013; 16:898–902 [View Article][PubMed]
    [Google Scholar]
  23. Yin L, Lazar MA. The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian BMAL1 gene. Mol Endocrinol 2005; 19:1452–1459 [View Article][PubMed]
    [Google Scholar]
  24. Zamir I, Harding HP, Atkins GB, Hörlein A, Glass CK et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol Cell Biol 1996; 16:5458–5465 [View Article][PubMed]
    [Google Scholar]
  25. Zhuang Q, Li W, Benda C, Huang Z, Ahmed T et al. NCoR/SMRT co-repressors cooperate with c-myc to create an epigenetic barrier to somatic cell reprogramming. Nat Cell Biol 2018; 20:400–412 [View Article][PubMed]
    [Google Scholar]
  26. Watson PJ, Fairall L, Schwabe JWR. Nuclear hormone receptor co-repressors: structure and function. Mol Cell Endocrinol 2012; 348:440–449 [View Article][PubMed]
    [Google Scholar]
  27. Guenther MG, Barak O, Lazar MA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 2001; 21:6091–6101 [View Article][PubMed]
    [Google Scholar]
  28. Sun Z, Feng D, Fang B, Mullican SE, You S-H et al. Deacetylase-Independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell 2013; 52:769–782 [View Article][PubMed]
    [Google Scholar]
  29. Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 2014; 516:272–275 [View Article][PubMed]
    [Google Scholar]
  30. Wang Z, Zang C, Cui K, Schones DE, Barski A et al. Genome-Wide mapping of hats and HDACs reveals distinct functions in active and inactive genes. Cell 2009; 138:1019–1031 [View Article][PubMed]
    [Google Scholar]
  31. Kim YH, Marhon SA, Zhang Y, Steger DJ, Won K-J et al. Rev-Erbα dynamically modulates chromatin looping to control circadian gene transcription. Science 2018; 359:1274–1277 [View Article][PubMed]
    [Google Scholar]
  32. Phelps MP, Bailey JN, Vleeshouwer-Neumann T, Chen EY. Crispr screen identifies the NCOR/HDAC3 complex as a major suppressor of differentiation in rhabdomyosarcoma. Proc Natl Acad Sci U S A 2016; 113:15090–15095 [View Article][PubMed]
    [Google Scholar]
  33. Fu J, Yoon H-G, Qin J, Wong J. Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Mol Cell Biol 2007; 27:4641–4651 [View Article][PubMed]
    [Google Scholar]
  34. Koerner MV, FitzPatrick L, Selfridge J, Guy J, De Sousa D et al. Toxicity of overexpressed MeCP2 is independent of HDAC3 activity. Genes Dev 2018; 32:1514–1524 [View Article][PubMed]
    [Google Scholar]
  35. Legrand N, Bretscher CL, Zielke S, Wilke B, Daude M et al. PPARβ/δ recruits NCOR and regulates transcription reinitiation of ANGPTL4. Nucleic Acids Res 2019; 47:9573–9591 [View Article][PubMed]
    [Google Scholar]
  36. Stubenrauch F, Straub E, Fertey J, Iftner T. The E8 repression domain can replace the E2 transactivation domain for growth inhibition of HeLa cells by papillomavirus E2 proteins. Int J Cancer 2007; 121:2284–2292 [View Article][PubMed]
    [Google Scholar]
  37. van de Poel S, Dreer M, Velic A, Macek B, Baskaran P et al. Identification and functional characterization of phosphorylation sites of the human papillomavirus 31 E8^E2 protein. J Virol 2018; 92: [View Article][PubMed]
    [Google Scholar]
  38. Guo C, Gow C-H, Li Y, Gardner A, Khan S et al. Regulated clearance of histone deacetylase 3 protects independent formation of nuclear receptor corepressor complexes. J Biol Chem 2012; 287:12111–12120 [View Article][PubMed]
    [Google Scholar]
  39. Smith JA, White EA, Sowa ME, Powell MLC, Ottinger M et al. Genome-Wide siRNA screen identifies SMCX, EP400, and BRD4 as E2-dependent regulators of human papillomavirus oncogene expression. Proc Natl Acad Sci U S A 2010; 107:3752–3757 [View Article][PubMed]
    [Google Scholar]
  40. Wu S-Y, Lee A-Y, Hou SY, Kemper JK, Erdjument-Bromage H et al. Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 2006; 20:2383–2396 [View Article][PubMed]
    [Google Scholar]
  41. Yan J, Li Q, Lievens S, Tavernier J, You J. Abrogation of the Brd4-positive transcription elongation factor B complex by papillomavirus E2 protein contributes to viral oncogene repression. J Virol 2010; 84:76–87 [View Article][PubMed]
    [Google Scholar]
  42. Jeronimo C, Bataille AR, Robert F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem Rev 2013; 113:8491–8522 [View Article][PubMed]
    [Google Scholar]
  43. Ishizuka T, Lazar MA. The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol 2003; 23:5122–5131 [View Article][PubMed]
    [Google Scholar]
  44. Yoon H-G, Chan DW, Huang Z-Q, Li J, Fondell JD et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. Embo J 2003; 22:1336–1346 [View Article][PubMed]
    [Google Scholar]
  45. Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S et al. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene 2013; 32:5241–5252 [View Article][PubMed]
    [Google Scholar]
  46. Cowger JJM, Torchia J. Direct association between the CREB-binding protein (CBP) and nuclear receptor corepressor (N-CoR). Biochemistry 2006; 45:13150–13162 [View Article][PubMed]
    [Google Scholar]
  47. Yu J, Li Y, Ishizuka T, Guenther MG, Lazar MA. A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. Embo J 2003; 22:3403–3410 [View Article][PubMed]
    [Google Scholar]
  48. Wang W-M, Wu S-Y, Lee A-Y, Chiang C-M. Binding site specificity and factor redundancy in activator protein-1-driven human papillomavirus chromatin-dependent transcription. J Biol Chem 2011; 286:40974–40986 [View Article][PubMed]
    [Google Scholar]
  49. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 2002; 9:45–57 [View Article][PubMed]
    [Google Scholar]
  50. Lan X, Atanassov BS, Li W, Zhang Y, Florens L et al. Usp44 is an integral component of N-CoR that contributes to gene repression by deubiquitinating histone H2B. Cell Rep 2016; 17:2382–2393 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001438
Loading
/content/journal/jgv/10.1099/jgv.0.001438
Loading

Data & Media loading...

Most cited Most Cited RSS feed