Skip to content
1887

Abstract

Human papillomaviruses (HPV) such as HPV16 and HPV31 encode an E8^E2 protein that acts as a repressor of viral replication and transcription. E8^E2′s repression activities are mediated via the interaction with host-cell NCoR (nuclear receptor corepressor)/SMRT (silencing mediator of retinoid and thyroid receptors) corepressor complexes, which consist of NCoR, its homologue SMRT, GPS2 (G-protein pathway suppressor 2), HDAC3 (histone deacetylase 3), TBL1 (transducin b-like protein 1) and its homologue TBLR1 (TBL1-related protein 1). We now provide evidence that transcriptional repression by HPV31 E8^E2 is NCoR/SMRT-dependent but surprisingly always HDAC3-independent when analysing different HPV promoters. This is in contrast to the majority of several cellular transcription factors using NCoR/SMRT complexes whose transcriptional repression activities are both NCoR/SMRT- and HDAC3-dependent. However, NCoR/SMRT-dependent but HDAC3-independent repression has been described for specific cellular genes, suggesting that this may not be specific for HPV promoters but could be a feature of a subset of NCoR/SMRT-HDAC3 regulated genes.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award Stu 218/4-2)
    • Principle Award Recipient: Frank Stubenrauch
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001438
2020-05-18
2025-04-30
Loading full text...

Full text loading...

References

  1. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer 2017; 141:664–670 [View Article][PubMed]
    [Google Scholar]
  2. Bergvall M, Melendy T, Archambault J. The E1 proteins. Virology 2013; 445:35–56 [View Article][PubMed]
    [Google Scholar]
  3. McBride AA. The papillomavirus E2 proteins. Virology 2013; 445:57–79 [View Article][PubMed]
    [Google Scholar]
  4. Dreer M, van de Poel S, Stubenrauch F. Control of viral replication and transcription by the papillomavirus E8^E2 protein. Virus Res 2017; 231:96–102 [View Article][PubMed]
    [Google Scholar]
  5. Dreer M, Fertey J, van de Poel S, Straub E, Madlung J et al. Interaction of NCOR/SMRT repressor complexes with papillomavirus E8^E2C proteins inhibits viral replication. PLoS Pathog 2016; 12:e1005556 [View Article][PubMed]
    [Google Scholar]
  6. Isok-Paas H, Männik A, Ustav E, Ustav M. The transcription map of HPV11 in U2OS cells adequately reflects the initial and stable replication phases of the viral genome. Virol J 2015; 12:59 [View Article][PubMed]
    [Google Scholar]
  7. Kurg R, Uusen P, Võsa L, Ustav M. Human papillomavirus E2 protein with single activation domain initiates HPV18 genome replication, but is not sufficient for long-term maintenance of virus genome. Virology 2010; 408:159–166 [View Article][PubMed]
    [Google Scholar]
  8. Lace MJ, Anson JR, Thomas GS, Turek LP, Haugen TH. The E8--E2 gene product of human papillomavirus type 16 represses early transcription and replication but is dispensable for viral plasmid persistence in keratinocytes. J Virol 2008; 82:10841–10853 [View Article][PubMed]
    [Google Scholar]
  9. Sankovski E, Männik A, Geimanen J, Ustav E, Ustav M. Mapping of Betapapillomavirus human papillomavirus 5 transcription and characterization of viral-genome replication function. J Virol 2014; 88:961–973 [View Article][PubMed]
    [Google Scholar]
  10. Straub E, Dreer M, Fertey J, Iftner T, Stubenrauch F. The viral E8^E2C repressor limits productive replication of human papillomavirus 16. J Virol 2014; 88:937–947 [View Article][PubMed]
    [Google Scholar]
  11. Stubenrauch F, Hummel M, Iftner T, Laimins LA. The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol 2000; 74:1178–1186 [View Article][PubMed]
    [Google Scholar]
  12. Zobel T, Iftner T, Stubenrauch F. The papillomavirus E8-E2C protein represses DNA replication from extrachromosomal origins. Mol Cell Biol 2003; 23:8352–8362 [View Article][PubMed]
    [Google Scholar]
  13. Ammermann I, Bruckner M, Matthes F, Iftner T, Stubenrauch F. Inhibition of transcription and DNA replication by the papillomavirus E8-E2C protein is mediated by interaction with corepressor molecules. J Virol 2008; 82:5127–5136 [View Article][PubMed]
    [Google Scholar]
  14. Stubenrauch F, Zobel T, Iftner T. The E8 domain confers a novel long-distance transcriptional repression activity on the E8E2C protein of high-risk human papillomavirus type 31. J Virol 2001; 75:4139–4149 [View Article][PubMed]
    [Google Scholar]
  15. Powell MLC, Smith JA, Sowa ME, Harper JW, Iftner T et al. NCoR1 mediates papillomavirus E8;E2C transcriptional repression. J Virol 2010; 84:4451–4460 [View Article][PubMed]
    [Google Scholar]
  16. Straub E, Fertey J, Dreer M, Iftner T, Stubenrauch F. Characterization of the human papillomavirus 16 E8 promoter. J Virol 2015; 89:7304–7313 [View Article][PubMed]
    [Google Scholar]
  17. Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377:454–457 [View Article][PubMed]
    [Google Scholar]
  18. Dowell P, Ishmael JE, Avram D, Peterson VJ, Nevrivy DJ et al. Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor alpha interacting protein. J Biol Chem 1999; 274:15901–15907 [View Article][PubMed]
    [Google Scholar]
  19. Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B et al. Ligand-Independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377:397–404 [View Article][PubMed]
    [Google Scholar]
  20. Krogsdam A-M, Nielsen CAF, Neve S, Holst D, Helledie T et al. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation. Biochem J 2002; 363:157–165 [View Article][PubMed]
    [Google Scholar]
  21. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A 1998; 95:2920–2925 [View Article][PubMed]
    [Google Scholar]
  22. Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 2013; 16:898–902 [View Article][PubMed]
    [Google Scholar]
  23. Yin L, Lazar MA. The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian BMAL1 gene. Mol Endocrinol 2005; 19:1452–1459 [View Article][PubMed]
    [Google Scholar]
  24. Zamir I, Harding HP, Atkins GB, Hörlein A, Glass CK et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol Cell Biol 1996; 16:5458–5465 [View Article][PubMed]
    [Google Scholar]
  25. Zhuang Q, Li W, Benda C, Huang Z, Ahmed T et al. NCoR/SMRT co-repressors cooperate with c-myc to create an epigenetic barrier to somatic cell reprogramming. Nat Cell Biol 2018; 20:400–412 [View Article][PubMed]
    [Google Scholar]
  26. Watson PJ, Fairall L, Schwabe JWR. Nuclear hormone receptor co-repressors: structure and function. Mol Cell Endocrinol 2012; 348:440–449 [View Article][PubMed]
    [Google Scholar]
  27. Guenther MG, Barak O, Lazar MA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 2001; 21:6091–6101 [View Article][PubMed]
    [Google Scholar]
  28. Sun Z, Feng D, Fang B, Mullican SE, You S-H et al. Deacetylase-Independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell 2013; 52:769–782 [View Article][PubMed]
    [Google Scholar]
  29. Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 2014; 516:272–275 [View Article][PubMed]
    [Google Scholar]
  30. Wang Z, Zang C, Cui K, Schones DE, Barski A et al. Genome-Wide mapping of hats and HDACs reveals distinct functions in active and inactive genes. Cell 2009; 138:1019–1031 [View Article][PubMed]
    [Google Scholar]
  31. Kim YH, Marhon SA, Zhang Y, Steger DJ, Won K-J et al. Rev-Erbα dynamically modulates chromatin looping to control circadian gene transcription. Science 2018; 359:1274–1277 [View Article][PubMed]
    [Google Scholar]
  32. Phelps MP, Bailey JN, Vleeshouwer-Neumann T, Chen EY. Crispr screen identifies the NCOR/HDAC3 complex as a major suppressor of differentiation in rhabdomyosarcoma. Proc Natl Acad Sci U S A 2016; 113:15090–15095 [View Article][PubMed]
    [Google Scholar]
  33. Fu J, Yoon H-G, Qin J, Wong J. Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Mol Cell Biol 2007; 27:4641–4651 [View Article][PubMed]
    [Google Scholar]
  34. Koerner MV, FitzPatrick L, Selfridge J, Guy J, De Sousa D et al. Toxicity of overexpressed MeCP2 is independent of HDAC3 activity. Genes Dev 2018; 32:1514–1524 [View Article][PubMed]
    [Google Scholar]
  35. Legrand N, Bretscher CL, Zielke S, Wilke B, Daude M et al. PPARβ/δ recruits NCOR and regulates transcription reinitiation of ANGPTL4. Nucleic Acids Res 2019; 47:9573–9591 [View Article][PubMed]
    [Google Scholar]
  36. Stubenrauch F, Straub E, Fertey J, Iftner T. The E8 repression domain can replace the E2 transactivation domain for growth inhibition of HeLa cells by papillomavirus E2 proteins. Int J Cancer 2007; 121:2284–2292 [View Article][PubMed]
    [Google Scholar]
  37. van de Poel S, Dreer M, Velic A, Macek B, Baskaran P et al. Identification and functional characterization of phosphorylation sites of the human papillomavirus 31 E8^E2 protein. J Virol 2018; 92: [View Article][PubMed]
    [Google Scholar]
  38. Guo C, Gow C-H, Li Y, Gardner A, Khan S et al. Regulated clearance of histone deacetylase 3 protects independent formation of nuclear receptor corepressor complexes. J Biol Chem 2012; 287:12111–12120 [View Article][PubMed]
    [Google Scholar]
  39. Smith JA, White EA, Sowa ME, Powell MLC, Ottinger M et al. Genome-Wide siRNA screen identifies SMCX, EP400, and BRD4 as E2-dependent regulators of human papillomavirus oncogene expression. Proc Natl Acad Sci U S A 2010; 107:3752–3757 [View Article][PubMed]
    [Google Scholar]
  40. Wu S-Y, Lee A-Y, Hou SY, Kemper JK, Erdjument-Bromage H et al. Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 2006; 20:2383–2396 [View Article][PubMed]
    [Google Scholar]
  41. Yan J, Li Q, Lievens S, Tavernier J, You J. Abrogation of the Brd4-positive transcription elongation factor B complex by papillomavirus E2 protein contributes to viral oncogene repression. J Virol 2010; 84:76–87 [View Article][PubMed]
    [Google Scholar]
  42. Jeronimo C, Bataille AR, Robert F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem Rev 2013; 113:8491–8522 [View Article][PubMed]
    [Google Scholar]
  43. Ishizuka T, Lazar MA. The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol 2003; 23:5122–5131 [View Article][PubMed]
    [Google Scholar]
  44. Yoon H-G, Chan DW, Huang Z-Q, Li J, Fondell JD et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. Embo J 2003; 22:1336–1346 [View Article][PubMed]
    [Google Scholar]
  45. Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S et al. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene 2013; 32:5241–5252 [View Article][PubMed]
    [Google Scholar]
  46. Cowger JJM, Torchia J. Direct association between the CREB-binding protein (CBP) and nuclear receptor corepressor (N-CoR). Biochemistry 2006; 45:13150–13162 [View Article][PubMed]
    [Google Scholar]
  47. Yu J, Li Y, Ishizuka T, Guenther MG, Lazar MA. A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. Embo J 2003; 22:3403–3410 [View Article][PubMed]
    [Google Scholar]
  48. Wang W-M, Wu S-Y, Lee A-Y, Chiang C-M. Binding site specificity and factor redundancy in activator protein-1-driven human papillomavirus chromatin-dependent transcription. J Biol Chem 2011; 286:40974–40986 [View Article][PubMed]
    [Google Scholar]
  49. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 2002; 9:45–57 [View Article][PubMed]
    [Google Scholar]
  50. Lan X, Atanassov BS, Li W, Zhang Y, Florens L et al. Usp44 is an integral component of N-CoR that contributes to gene repression by deubiquitinating histone H2B. Cell Rep 2016; 17:2382–2393 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.001438
Loading
/content/journal/jgv/10.1099/jgv.0.001438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error