1887

Abstract

Diaphorina citri densovirus (DcDV) is an ambisense densovirus with a 5071 nt genome. Phylogenetic analysis places DcDV in an intermediate position between those in the and genera, a finding that is consistent with the observation that DcDV possesses an -like non-structural (NS) protein-gene cassette, but a capsid-protein (VP) gene cassette resembling those of other ambisense densoviruses. DcDV is maternally transmitted to 100 % of the progeny of infected female , and the progeny of infected females carry DcDV as a persistent infection without outward phenotypic effects. We were unable to infect naïve individuals by oral inoculation, however low levels of transient viral replication are detected following intrathoracic injection of DcDV virions into uninfected insects. Transcript mapping indicates that DcDV produces one transcript each from the NS and VP gene cassettes and that these transcripts are polyadenylated at internal sites to produce a ~2.2 kb transcript encoding the NS proteins and a ~2.4 kb transcript encoding the VP proteins. Additionally, we found that transcriptional readthrough leads to the production of longer non-canonical transcripts from both genomic strands.

Funding
This study was supported by the:
  • National Science Foundation (Award 1650042)
    • Principle Award Recipient: Jared C. Nigg
  • U.S. Department of Agriculture (Award 2015-70016-23011)
    • Principle Award Recipient: Bryce W. Falk
  • U.S. Department of Agriculture (Award 13-002NU-781)
    • Principle Award Recipient: Bryce W. Falk
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001371
2019-12-19
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/101/2/226.html?itemId=/content/journal/jgv/10.1099/jgv.0.001371&mimeType=html&fmt=ahah

References

  1. Bové JM. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J plant Pathol 20067–37
    [Google Scholar]
  2. Gottwald TR. Current epidemiological understanding of citrus Huanglongbing. Annu Rev Phytopathol 2010; 48:119–139 [View Article]
    [Google Scholar]
  3. Singerman A, Burani-Arouca M, Futch SH. The profitability of new citrus plantings in Florida in the era of huanglongbing. HortScience 2018; 53:1655–1663 [View Article]
    [Google Scholar]
  4. Milne AE, Teiken C, Deledalle F, van den Bosch F, Gottwald T et al. Growers' risk perception and trust in control options for huanglongbing citrus-disease in Florida and California. Crop Protection 2018; 114:177–186 [View Article]
    [Google Scholar]
  5. McRoberts N, Figuera SG, Olkowski S, McGuire B, Luo W et al. Using models to provide rapid programme support for California’s efforts to suppress Huanglongbing disease of citrus. Philos Trans R Soc B 1776; 2019:20180281
    [Google Scholar]
  6. Kishk A, Hijaz F, Anber HAI, AbdEl-Raof TK, El-Sherbeni A-HD et al. Rna interference of acetylcholinesterase in the Asian citrus psyllid, Diaphorina citri, increases its susceptibility to carbamate and organophosphate insecticides. Pestic Biochem Physiol 2017; 143:81–89 [View Article]
    [Google Scholar]
  7. Nouri S, Salem N, Nigg JC, Falk BW. Diverse array of new viral sequences identified in worldwide populations of the Asian citrus psyllid (Diaphorina citri) using viral metagenomics. J Virol 2016; 90:2434–2445 [View Article]
    [Google Scholar]
  8. Nigg JC, Nouri S, Falk BW. Complete genome sequence of a putative densovirus of the asian citrus psyllid, Diaphorina citri . Genome Announc 2016; 4:e00589–16 [View Article]
    [Google Scholar]
  9. Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger A-M et al. ICTV virus taxonomy profile: Parvoviridae. J Gen Virol 2019; 100:367–368 [View Article]
    [Google Scholar]
  10. Tijssen P, Pénzes JJ, Yu Q, Pham HT, Bergoin M. Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past. J Invertebr Pathol 2016; 140:83–96 [View Article]
    [Google Scholar]
  11. Xu P, Liu Y, Graham RI, Wilson K, Wu K. Densovirus is a mutualistic symbiont of a global crop PEST (Helicoverpa armigera) and protects against a baculovirus and Bt Biopesticide. PLoS Pathog 2014; 10:e1004490 [View Article]
    [Google Scholar]
  12. van Munster M, Dullemans AM, Verbeek M, van den Heuvel JFJM, Reinbold C et al. Characterization of a new densovirus infecting the green peach aphid Myzus persicae. J Invertebr Pathol 2003; 84:6–14 [View Article]
    [Google Scholar]
  13. François S, Mutuel D, Duncan A, Rodrigues L, Danzelle C et al. A new prevalent densovirus discovered in Acari. insight from Metagenomics in viral communities associated with two-spotted mite (Tetranychus urticae) populations. Viruses 2019; 11:233 [View Article]
    [Google Scholar]
  14. Jiang H, Zhou L, Zhang J-M, Dong H-F, Hu Y-Y et al. Potential of Periplaneta fuliginosa densovirus as a biocontrol agent for smoky-brown cockroach, P. fuliginosa. Biological Control 2008; 46:94–100 [View Article]
    [Google Scholar]
  15. Carlson J, Suchman E, Buchatsky L. Densoviruses for control and genetic manipulation of mosquitoes. Adv Virus Res 2006; 68:361–392
    [Google Scholar]
  16. Afanasiev BN, Kozlov YV, Carlson JO, Beaty BJ. Densovirus of Aedes aegypti as an expression vector in mosquito cells. Exp Parasitol 1994; 79:322–339 [View Article]
    [Google Scholar]
  17. Hu L, Zhang L, Shen C, Lu J, Zhang J et al. The densovirus of Periplaneta fuliginosa (PfDNV) as an insect vector for persistent foreign gene expression in vivo . Biochem Biophys Res Commun 2007; 358:976–982 [View Article]
    [Google Scholar]
  18. Ilyina TV, Koonin EV. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 1992; 20:3279–3285 [View Article]
    [Google Scholar]
  19. Ding C, Urabe M, Bergoin M, Kotin RM. Biochemical characterization of Junonia coenia densovirus nonstructural protein NS-1. J Virol 2002; 76:338–345 [View Article]
    [Google Scholar]
  20. Zádori Z, Szelei J, Lacoste M-C, Li Y, Gariépy S et al. A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell 2001; 1:291–302 [View Article]
    [Google Scholar]
  21. Tijssen P, Bando H, Li Y, Jousset F, Zadori Z et al. Evolution of densoviruses. Parvoviruses 2005; 5:55–60
    [Google Scholar]
  22. van Munster M et al. A new virus infecting Myzus persicae has a genome organization similar to the species of the genus densovirus. J Gen Virol 2003; 84:165–172 [View Article]
    [Google Scholar]
  23. Liu K, Li Y, Jousset FX, Zadori Z, Szelei J et al. The Acheta domesticus densovirus, isolated from the European house cricket, has evolved an expression strategy unique among parvoviruses. J Virol 2011; 85:10069–10078 [View Article]
    [Google Scholar]
  24. Schoonvaere K, Smagghe G, Francis F, de Graaf DC. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front Microbiol 2018; 9:177 [View Article]
    [Google Scholar]
  25. Bates RC, Snyder CE, Banerjee PT, Mitra S. Autonomous parvovirus LuIII encapsidates equal amounts of plus and minus DNA strands. J Virol 1984; 49:319–324
    [Google Scholar]
  26. Siegl G, Bates RC, Berns KI, Carter BJ, Kelly DC et al. Characteristics and taxonomy of Parvoviridae. Intervirology 1985; 23:61–73 [View Article]
    [Google Scholar]
  27. Kelly DC, Barwise AH, Walker IO. Dna contained by two densonucleosis viruses. J Virol 1977; 21:396–407
    [Google Scholar]
  28. Nakagaki M, Kawase S. Dna of a new parvo-like virus isolated from the silkworm, Bombyx mori. J Invertebr Pathol 1980; 35:124–133 [View Article]
    [Google Scholar]
  29. Cotmore SF, Tattersall P. A Rolling-Hairpin Strategy: Basic Mechanisms of DNA Replication in the Parvoviruses Hoddler Arond: Parvoviruses London; 2005 pp 171–181
    [Google Scholar]
  30. Chen Q, Godfrey K, Liu J, Mao Q, Kuo Y-W et al. A nonstructural protein responsible for viral spread of a novel insect reovirus provides a safe channel for biparental virus transmission to progeny. J Virol 2019JVI-00702
    [Google Scholar]
  31. Lebedinets NN, Kononko AG. Experimental study of densovirus infection transmission in blood-sucking mosquito populations. Med Parazitol 1989; 2:79–83
    [Google Scholar]
  32. Van De Wetering F, Goldbach R, Peters D. Tomato spotted wilt tospovirus ingestion by first instar larvae of Frankliniella occidentalis is a prerequisite for transmission. Phytopathol YORK Balt THEN ST PAUL 1996; 86:900–905
    [Google Scholar]
  33. Killiny N, Kishk A. Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing-sucking hemipteran, Diaphorina citri . Arch Insect Biochem Physiol 2017; 95:e21394 [View Article]
    [Google Scholar]
  34. Mondotte JA, Gausson V, Frangeul L, Blanc H, Lambrechts L et al. Immune priming and clearance of orally acquired RNA viruses in Drosophila. Nat Microbiol 2018; 3:1394–1403 [View Article]
    [Google Scholar]
  35. Kapelinskaya TV, Martynova EU, Korolev AL, Schal C, Mukha DV. Transcription of the German cockroach densovirus BgDNV genome: alternative processing of viral RNAs. Doklady Biochemistry and Biophysics 421 Springer; 2008 pp 176–180 [View Article]
    [Google Scholar]
  36. Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 2001; 26:51–56 [View Article]
    [Google Scholar]
  37. Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 2015; 479-480:2–25 [View Article]
    [Google Scholar]
  38. Shackelton LA, Hoelzer K, Parrish CR, Holmes EC. Comparative analysis reveals frequent recombination in the parvoviruses. J Gen Virol 2007; 88:3294–3301 [View Article]
    [Google Scholar]
  39. Martynova EU, Schal C, Mukha DV. Effects of recombination on densovirus phylogeny. Arch Virol 2016; 161:63–75 [View Article]
    [Google Scholar]
  40. François S, Bernardo P, Filloux D, Roumagnac P, Yaverkovski N et al. A novel itera-like densovirus isolated by viral metagenomics from the sea barley Hordeum marinum. Genome Announc 2014; 2:e01196–14 [View Article]
    [Google Scholar]
  41. Wayne ML, Contamine D, Kreitman M. Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol Biol Evol 1996; 13:191–199 [View Article]
    [Google Scholar]
  42. Carré-Mlouka A, Gaumer S, Gay P, Petitjean AM, Coulondre C et al. Control of Sigma Virus Multiplication by the ref(2)P Gene of Drosophila melanogaster : An in Vivo Study of the PB1 Domain of Ref(2)P . Genetics 2007; 176:409–419 [View Article]
    [Google Scholar]
  43. Contamine D, Petitjean AM, Ashburner M. Genetic resistance to viral infection: the molecular cloning of a Drosophila gene that restricts infection by the rhabdovirus sigma. Genetics 1989; 123:525–533
    [Google Scholar]
  44. Bennett KE, Beaty BJ, Black WC. Selection of D2S3, an Aedes aegypti (Diptera: Culicidae) strain with high oral susceptibility to dengue 2 virus and D2MEB, a strain with a midgut barrier to dengue 2 escape. J Med Entomol 2005; 42:110–119 [View Article]
    [Google Scholar]
  45. Anderson JR, Schneider JR, Grimstad PR, Severson DW. Quantitative Genetics of Vector Competence for La Crosse Virus and Body Size in Ochlerotatus hendersoni and Ochlerotatus triseriatus Interspecific Hybrids. Genetics 2005; 169:1529–1539 [View Article]
    [Google Scholar]
  46. Mousson L, Vazeille M, Chawprom S, Prajakwong S, Rodhain F et al. Genetic structure of Aedes aegypti populations in Chiang Mai (Thailand) and relation with dengue transmission. Trop Med Int Health 2002; 7:865–872 [View Article]
    [Google Scholar]
  47. Lambrechts L, Quillery E, Noël V, Richardson JH, Jarman RG et al. Specificity of resistance to dengue virus isolates is associated with genotypes of the mosquito antiviral gene Dicer-2. Proc R Soc B Biol Sci 1751; 2013:20122437
    [Google Scholar]
  48. Ito K, Kidokoro K, Katsuma S, Sezutsu H, Uchino K et al. A single amino acid substitution in the Bombyx-specific mucin-like membrane protein causes resistance to Bombyx mori densovirus. Sci Rep 2018; 8:7430 [View Article]
    [Google Scholar]
  49. Luo Y, Agnarsson I. Global mtDNA genetic structure and hypothesized invasion history of a major pest of citrus, Diaphorina citri (Hemiptera: Liviidae). Ecol Evol 2018; 8:257–265 [View Article]
    [Google Scholar]
  50. Boykin LM, De Barro P, Hall DG, Hunter WB, McKenzie CL et al. Overview of worldwide diversity of Diaphorina citri Kuwayama mitochondrial cytochrome oxidase 1 haplotypes: two Old World lineages and a New World invasion. Bull Entomol Res 2012; 102:573–582 [View Article]
    [Google Scholar]
  51. Palmer W, Varghese F, van Rij R. Natural variation in resistance to virus infection in dipteran insects. Viruses 2018; 10:118 [View Article]
    [Google Scholar]
  52. Yu Q, Tijssen P. Gene expression of five different iteradensoviruses: Bombyx mori densovirus, Casphalia extranea densovirus, Papilio polyxenes densovirus, Sibine fusca densovirus, and Danaus plexippus densovirus. J Virol 2014; 88:12152–12157 [View Article]
    [Google Scholar]
  53. Xu P, Graham RI, Wilson K, Wu K. Structure and transcription of the Helicoverpa armigera densovirus (HaDV2) genome and its expression strategy in LD652 cells. Virol J 2017; 14:23 [View Article]
    [Google Scholar]
  54. Yamagishi J, Hu Y, Zheng J, Bando H. Genome organization and mRNA structure of Periplaneta fuliginosa densovirus imply alternative splicing involvement in viral gene expression. Arch Virol 1999; 144:2111–2124 [View Article]
    [Google Scholar]
  55. Guan W, Huang Q, Cheng F, Qiu J. Internal polyadenylation of the parvovirus B19 precursor mRNA is regulated by alternative splicing. J Biol Chem 2011; 286:24793–24805 [View Article]
    [Google Scholar]
  56. Qiu J, Cheng F, Johnson FB, Pintel D. The transcription profile of the bocavirus bovine parvovirus is unlike those of previously characterized parvoviruses. J Virol 2007; 81:12080–12085 [View Article]
    [Google Scholar]
  57. Pei J, Kim B-H, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 2008; 36:2295–2300 [View Article]
    [Google Scholar]
  58. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  59. Galdeano DM, Breton MC, Lopes JRS, Falk BW, Machado MA. Oral delivery of double-stranded RNAs induces mortality in nymphs and adults of the Asian citrus psyllid, Diaphorina citri. PLoS One 2017; 12:e0171847 [View Article]
    [Google Scholar]
  60. Lee C, Kim J, Shin SG, Hwang S. Absolute and relative qPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 2006; 123:273–280 [View Article]
    [Google Scholar]
  61. Team RC 2012; R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
  62. Ammar E-D, Hall DG. A new method for short-term rearing of citrus psyllids (Hemiptera: Pysllidae) and for collecting their honeydew excretions. Florida Entomologist 2011; 94:340–342 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001371
Loading
/content/journal/jgv/10.1099/jgv.0.001371
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error