Nuclear pore protein Nup98 is involved in replication of Rift Valley fever virus and nuclear import of virulence factor NSs Open Access

Abstract

The non-structural protein NSs is the main virulence factor of Rift Valley fever virus, a major zoonotic pathogen in Africa. NSs forms large aggregates in the nucleus and impairs induction of the antiviral type I IFN system by several mechanisms, including degradation of subunit p62 of the general RNA polymerase II transcription factor TFIIH. Here, we show that depletion of the nuclear pore protein Nup98 affects the nuclear import of NSs. Nonetheless, NSs was still able to degrade TFIIH-p62 under these conditions. Depletion of Nup98, however, had a negative effect on Rift Valley fever virus multiplication. Our data thus indicate that NSs utilizes Nup98 for import into the nucleus, but also plays a general role in the viral replication cycle.

Funding
This study was supported by the:
  • Bundesministerium für Bildung und Forschung (Award Infect-ERA ESCential)
    • Principle Award Recipient: Friedemann Weber
  • Bundesministerium für Bildung und Forschung (Award RAPID)
    • Principle Award Recipient: Friedemann Weber
  • Deutsche Forschungsgemeinschaft (Award SFB 1021)
    • Principle Award Recipient: Friedemann Weber
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001347
2019-10-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/101/7/712.html?itemId=/content/journal/jgv/10.1099/jgv.0.001347&mimeType=html&fmt=ahah

References

  1. McMillen CM, Hartman AL. Rift Valley fever in animals and humans: current perspectives. Antiviral Res 2018; 156:29–37 [View Article][PubMed]
    [Google Scholar]
  2. Elliott RM, Brennan B. Emerging phleboviruses. Curr Opin Virol 2014; 5:50–57 [View Article]
    [Google Scholar]
  3. Lumley S, Horton DL, Hernandez-Triana LLM, Johnson N, Fooks AR et al. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol 2017; 98:875–887 [View Article][PubMed]
    [Google Scholar]
  4. Billecocq A, Spiegel M, Vialat P, Kohl A, Weber F et al. Nss protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 2004; 78:9798–9806 [View Article][PubMed]
    [Google Scholar]
  5. Head JA, Kalveram B, Ikegami T. Functional analysis of Rift Valley fever virus NSs encoding a partial truncation. PLoS One 2012; 7:e45730 [View Article][PubMed]
    [Google Scholar]
  6. Wuerth J, Weber F. Phleboviruses and the type I interferon response. Viruses 2016; 8:174 [View Article]
    [Google Scholar]
  7. Kainulainen M, Habjan M, Hubel P, Busch L, Lau S et al. Virulence factor NSs of Rift Valley fever virus recruits the F-box protein Fbxo3 to degrade subunit p62 of general transcription factor TFIIH. J Virol 2014; 88:3464–3473 [View Article][PubMed]
    [Google Scholar]
  8. Kalveram B, Lihoradova O, Ikegami T. Nss protein of Rift Valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62. J Virol 2011; 85:6234–6243 [View Article][PubMed]
    [Google Scholar]
  9. Le May N, Dubaele S, Proietti De Santis L, Billecocq A, Bouloy M et al. Tfiih transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 2004; 116:541–550 [View Article][PubMed]
    [Google Scholar]
  10. Le May N, Mansuroglu Z, Léger P, Josse T, Blot G et al. A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PLoS Pathog 2008; 4:e13 [View Article][PubMed]
    [Google Scholar]
  11. Benferhat R, Josse T, Albaud B, Gentien D, Mansuroglu Z et al. Large-Scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSS protein of Rift Valley fever virus with regulatory DNA regions of the host genome. J Virol 2012; 86:11333–11344 [View Article][PubMed]
    [Google Scholar]
  12. Copeland AM, Van Deusen NM, Schmaljohn CS. Rift Valley fever virus NSs gene expression correlates with a defect in nuclear mRNA export. Virology 2015; 486:88–93 [View Article][PubMed]
    [Google Scholar]
  13. Boulikas T. Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr 1993; 3:193–227[PubMed]
    [Google Scholar]
  14. Barski M, Brennan B, Miller OK, Potter JA, Vijayakrishnan S et al. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments. Elife 2017; 6:e29236 [View Article][PubMed]
    [Google Scholar]
  15. Yadani FZ, Kohl A, Prehaud C, Billecocq A, Bouloy M. The carboxy-terminal acidic domain of Rift Valley fever virus NSs protein is essential for the formation of filamentous structures but not for the nuclear localization of the protein. J Virol 1999; 73:5018–5025[PubMed]
    [Google Scholar]
  16. Pichlmair A, Kandasamy K, Alvisi G, Mulhern O, Sacco R et al. Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 2012; 487:486–490 [View Article][PubMed]
    [Google Scholar]
  17. Iwamoto M, Asakawa H, Hiraoka Y, Haraguchi T. Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms. Genes Cells 2010; 15:661–669 [View Article][PubMed]
    [Google Scholar]
  18. Capelson M, Liang Y, Schulte R, Mair W, Wagner U et al. Chromatin-Bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 2010; 140:372–383 [View Article][PubMed]
    [Google Scholar]
  19. Panda D, Gold B, Tartell MA, Rausch K, Casas-Tinto S et al. The transcription factor FoxK participates with Nup98 to regulate antiviral gene expression. mBio 2015; 6:e02509-14 [View Article][PubMed]
    [Google Scholar]
  20. Guan T, Müller S, Klier G, Panté N, Blevitt JM et al. Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 1995; 6:1591–1603 [View Article][PubMed]
    [Google Scholar]
  21. Percipalle P, Clarkson WD, Kent HM, Rhodes D, Stewart M. Molecular interactions between the importin α/β heterodimer and proteins involved in vertebrate nuclear protein import. J Mol Biol 1997; 266:722–732 [View Article][PubMed]
    [Google Scholar]
  22. Schmidt HB, Görlich D. Transport selectivity of nuclear pores, phase separation, and Membraneless organelles. Trends Biochem Sci 2016; 41:46–61 [View Article][PubMed]
    [Google Scholar]
  23. Radu A, Moore MS, Blobel G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 1995; 81:215–222 [View Article][PubMed]
    [Google Scholar]
  24. Enninga J, Levy DE, Blobel G, Fontoura BM. Role of nucleoporin induction in releasing an mRNA nuclear export block. Science 2002; 295:1523–1525 [View Article][PubMed]
    [Google Scholar]
  25. von Kobbe C, van Deursen JM, Rodrigues JP, Sitterlin D, Bachi A et al. Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98. Mol Cell 2000; 6:1243–1252 [View Article][PubMed]
    [Google Scholar]
  26. Ciomperlik JJ, Basta HA, Palmenberg AC. Three Cardiovirus leader proteins equivalently inhibit four different nucleocytoplasmic trafficking pathways. Virology 2015; 484:194–202 [View Article][PubMed]
    [Google Scholar]
  27. Satterly N, Tsai P-L, van Deursen J, Nussenzveig DR, Wang Y et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci U S A 2007; 104:1853–1858 [View Article]
    [Google Scholar]
  28. Park N, Katikaneni P, Skern T, Gustin KE. Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol 2008; 82:1647–1655 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001347
Loading
/content/journal/jgv/10.1099/jgv.0.001347
Loading

Data & Media loading...

Most cited Most Cited RSS feed