1887

Abstract

The innate immune system responds rapidly to protect against viral infections, but an overactive response can cause harmful damage. To avoid this, the response is tightly regulated by post-translational modifications (PTMs). The ubiquitin system represents a powerful PTM machinery that allows for the reversible linkage of ubiquitin to activate and deactivate a target’s function. A precise enzymatic cascade of ubiquitin-activating, conjugating and ligating enzymes facilitates ubiquitination. Viruses have evolved to take advantage of the ubiquitin pathway either by targeting factors to dampen the antiviral response or by hijacking the system to enhance their replication. The tripartite motif (TRIM) family of E3 ubiquitin ligases has garnered attention as a major contributor to innate immunity. Many TRIM family members limit viruses either indirectly as components in innate immune signalling, or directly by targeting viral proteins for degradation. In spite of this, TRIMs and other ubiquitin ligases can be appropriated by viruses and repurposed as valuable tools in viral replication. This duality of function suggests a new frontier of research for TRIMs and raises new challenges for discerning the subtleties of these pro-viral mechanisms. Here, we review current findings regarding the involvement of TRIMs in host–virus interactions. We examine ongoing developments in the field, including novel roles for unanchored ubiquitin in innate immunity, the direct involvement of ubiquitin ligases in promoting viral replication, recent controversies on the role of ubiquitin and TRIM25 in activation of the pattern recognition receptor RIG-I, and we discuss the implications these studies have on future research directions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001341
2019-12-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/100/12/1641.html?itemId=/content/journal/jgv/10.1099/jgv.0.001341&mimeType=html&fmt=ahah

References

  1. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783–801 [CrossRef]
    [Google Scholar]
  2. van Gent M, Sparrer KMJ, Gack MU. Trim proteins and their roles in antiviral host defenses. Annu Rev Virol 2018;5:385–405 [CrossRef]
    [Google Scholar]
  3. Bottermann M, James LC. Intracellular antiviral immunity. Adv Virus Res 2018;100:309–354 [CrossRef]
    [Google Scholar]
  4. van Tol S, Hage A, Giraldo M, Bharaj P, Rajsbaum R. The TRIMendous role of TRIMs in virus–host interactions. Vaccines 2017;5:23 [CrossRef]
    [Google Scholar]
  5. Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017;52:425–460 [CrossRef]
    [Google Scholar]
  6. Vunjak M, Versteeg GA. Trim proteins. Curr Biol 2019;29:R42–R44 [CrossRef]
    [Google Scholar]
  7. Rajsbaum R, García-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 2014;426:1265–1284 [CrossRef]
    [Google Scholar]
  8. Fletcher AJ, Towers GJ. Inhibition of retroviral replication by members of the TRIM protein family. Curr Top Microbiol Immunol 2013;371:29–66 [CrossRef]
    [Google Scholar]
  9. McNab FW, Rajsbaum R, Stoye JP, O'Garra A. Tripartite-motif proteins and innate immune regulation. Curr Opin Immunol 2011;23:46–56 [CrossRef]
    [Google Scholar]
  10. Nisole S, Stoye JP, Saïb A. Trim family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005;3:799–808 [CrossRef]
    [Google Scholar]
  11. Chiang C, Gack MU. Post-Translational control of intracellular pathogen sensing pathways. Trends Immunol 2017;38:39–52 [CrossRef]
    [Google Scholar]
  12. Liu J, Qian C, Cao X. Post-Translational modification control of innate immunity. Immunity 2016;45:15–30 [CrossRef]
    [Google Scholar]
  13. Gyrd-Hansen M. All roads lead to ubiquitin. Cell Death Differ 2017;24:1135–1136 [CrossRef]
    [Google Scholar]
  14. Swatek KN, Komander D. Ubiquitin modifications. Cell Res 2016;26:399–422 [CrossRef]
    [Google Scholar]
  15. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012;81:203–229 [CrossRef]
    [Google Scholar]
  16. Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009;10:755–764 [CrossRef]
    [Google Scholar]
  17. Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol 2016;18:579–586 [CrossRef]
    [Google Scholar]
  18. Versteeg GA, Benke S, García-Sastre A, Rajsbaum R. InTRIMsic immunity: positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev 2014;25:563–576 [CrossRef]
    [Google Scholar]
  19. Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. J Cell Sci 2016;129:875–880 [CrossRef]
    [Google Scholar]
  20. Xia ZP, Sun L, Chen X, Pineda G, Jiang X et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009;461:114–119 [CrossRef]
    [Google Scholar]
  21. Zeng W, Sun L, Jiang X, Chen X, Hou F et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010;141:315–330 [CrossRef]
    [Google Scholar]
  22. Rajsbaum R, Versteeg GA, Schmid S, Maestre AM, Belicha-Villanueva A et al. Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKε kinase-mediated antiviral response. Immunity 2014;40:880–895 [CrossRef]
    [Google Scholar]
  23. Morreale FE, Walden H. Types of ubiquitin ligases. Cell 2016;165:248-248.e1 [CrossRef]
    [Google Scholar]
  24. Zhang Y, Li LF, Munir M, Qiu HJ. RING-Domain E3 ligase-mediated host-virus interactions: orchestrating immune responses by the host and antagonizing immune defense by viruses. Front Immunol 2018;9:1083 [CrossRef]
    [Google Scholar]
  25. Davis ME, Gack MU. Ubiquitination in the antiviral immune response. Virology 2015;479-480:52–65 [CrossRef]
    [Google Scholar]
  26. Hatakeyama S. Trim family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci 2017;42:297–311 [CrossRef]
    [Google Scholar]
  27. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S et al. The tripartite motif family identifies cell compartments. EMBO J 2001;20:2140–2151 [CrossRef]
    [Google Scholar]
  28. Rajsbaum R, Stoye JP, O'Garra A. Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells. Eur J Immunol 2008;38:619–630 [CrossRef]
    [Google Scholar]
  29. Demuth JP, De Bie T, Stajich JE, Cristianini N, Hahn MW. The evolution of mammalian gene families. PLoS One 2006;1:e85 [CrossRef]
    [Google Scholar]
  30. Xu L, Yang L, Liu W. Distinct evolution process among type I interferon in mammals. Protein Cell 2013;4:383–392 [CrossRef]
    [Google Scholar]
  31. van der Aa LM, Levraud JP, Yahmi M, Lauret E, Briolat V et al. A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish. BMC Biol 2009;7:7 [CrossRef]
    [Google Scholar]
  32. Ganser-Pornillos BK, Pornillos O. Restriction of HIV-1 and other retroviruses by TRIM5. Nat Rev Microbiol 2019;17:546556 [CrossRef]
    [Google Scholar]
  33. Meroni G. Genomics and evolution of the TRIM gene family. Adv Exp Med Biol 2012;770:1–9 [CrossRef]
    [Google Scholar]
  34. Esposito D, Koliopoulos MG, Rittinger K. Structural determinants of TRIM protein function. Biochem Soc Trans 2017;45:183–191 [CrossRef]
    [Google Scholar]
  35. Wallenhammar A, Anandapadamanaban M, Lemak A, Mirabello C, Lundström P et al. Solution NMR structure of the TRIM21 B-box2 and identification of residues involved in its interaction with the ring domain. PLoS One 2017;12:e0181551 [CrossRef]
    [Google Scholar]
  36. Wagner JM, Roganowicz MD, Skorupka K, Alam SL, Christensen D et al. Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α. Elife 2016;5:e16309 [CrossRef]
    [Google Scholar]
  37. Sanchez JG, Okreglicka K, Chandrasekaran V, Welker JM, Sundquist WI et al. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc Natl Acad Sci USA 2014;111:2494–2499 [CrossRef]
    [Google Scholar]
  38. D'Cruz AA, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci 2013;22:1–10 [CrossRef]
    [Google Scholar]
  39. Versteeg GA, Rajsbaum R, Sánchez-Aparicio MT, Maestre AM, Valdiviezo J et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 2013;38:384–398 [CrossRef]
    [Google Scholar]
  40. Taylor RT, Lubick KJ, Robertson SJ, Broughton JP, Bloom ME et al. TRIM79α, an interferon-stimulated gene product, restricts tick-borne encephalitis virus replication by degrading the viral RNA polymerase. Cell Host Microbe 2011;10:185–196 [CrossRef]
    [Google Scholar]
  41. Gack MU. Trimming flavivirus infection. Cell Host Microbe 2011;10:175–177 [CrossRef]
    [Google Scholar]
  42. Wang J, Liu B, Wang N, Lee YM, Liu C et al. TRIM56 is a virus- and interferon-inducible E3 ubiquitin ligase that restricts pestivirus infection. J Virol 2011;85:3733–3745 [CrossRef]
    [Google Scholar]
  43. Liu B, Li NL, Wang J, Shi PY, Wang T et al. Overlapping and distinct molecular determinants dictating the antiviral activities of TRIM56 against flaviviruses and coronavirus. J Virol 2014;88:13821–13835 [CrossRef]
    [Google Scholar]
  44. Liu B, NL L, Shen Y, Bao X, Fabrizio T et al. The C-terminal tail of TRIM56 dictates antiviral restriction of influenza A and B viruses by impeding viral RNA synthesis. Journal of virology 2016;90:4369–4382
    [Google Scholar]
  45. Yang D, Li NL, Wei D, Liu B, Guo F et al. The E3 ligase TRIM56 is a host restriction factor of Zika virus and depends on its RNA-binding activity but not miRNA regulation, for antiviral function. PLoS Negl Trop Dis 2019;13:e0007537 [CrossRef]
    [Google Scholar]
  46. Meyerson NR, Zhou L, Guo YR, Zhao C, Tao YJ et al. Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe 2017;22:e627627–638 [CrossRef]
    [Google Scholar]
  47. Chen D, Feng C, Tian X, Zheng N, Wu Z. PML restricts enterovirus 71 replication by inhibiting autophagy. Front Immunol 2018;9:1268 [CrossRef]
    [Google Scholar]
  48. Niwa-Kawakita M, Ferhi O, Soilihi H, Le Bras M, Lallemand-Breitenbach V et al. PML is a ROS sensor activating p53 upon oxidative stress. J Exp Med 2017;214:3197–3206 [CrossRef]
    [Google Scholar]
  49. Scherer M, Stamminger T. Emerging role of PML nuclear bodies in innate immune signaling. J Virol 2016;90:5850–5854 [CrossRef]
    [Google Scholar]
  50. El Asmi F, Brantis-de-Carvalho CE, Blondel D, Chelbi-Alix MK. Rhabdoviruses, antiviral defense, and SUMO pathway. Viruses 2018;10:E686 [CrossRef]
    [Google Scholar]
  51. Geoffroy MC, Chelbi-Alix MK. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 2011;31:145–158 [CrossRef]
    [Google Scholar]
  52. Maarifi G, Chelbi-Alix MK, Nisole S. PML control of cytokine signaling. Cytokine Growth Factor Rev 2014;25:551–561 [CrossRef]
    [Google Scholar]
  53. Sparrer KMJ, Gack MU. Trim proteins: new players in virus-induced autophagy. PLoS Pathog 2018;14:e1006787 [CrossRef]
    [Google Scholar]
  54. Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T et al. Trim proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell 2014;30:394–409 [CrossRef]
    [Google Scholar]
  55. Sparrer KMJ, Gableske S, Zurenski MA, Parker ZM, Full F et al. Trim23 mediates virus-induced autophagy via activation of TBK1. Nat Microbiol 2017;2:1543–1557 [CrossRef]
    [Google Scholar]
  56. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S et al. Tbk-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012;37:223–234 [CrossRef]
    [Google Scholar]
  57. Yuan T, Yao W, Tokunaga K, Yang R, Sun B. An HIV-1 capsid binding protein TRIM11 accelerates viral uncoating. Retrovirology 2016;13:72 [CrossRef]
    [Google Scholar]
  58. Pawlica P, Le Sage V, Poccardi N, Tremblay MJ, Mouland AJ et al. Functional evidence for the involvement of microtubules and dynein motor complexes in TRIM5α-mediated restriction of retroviruses. J Virol 2014;88:5661–5676 [CrossRef]
    [Google Scholar]
  59. Tan G, Xu F, Song H, Yuan Y, Xiao Q et al. Identification of TRIM14 as a type I IFN-stimulated gene controlling hepatitis B virus replication by targeting HBx. Front Immunol 2018;9:1872 [CrossRef]
    [Google Scholar]
  60. Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N et al. Hepatitis B virus X protein promotes degradation of Smc5/6 to enhance HBV replication. Cell Rep 2016;16:2846–2854 [CrossRef]
    [Google Scholar]
  61. Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI et al. Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci USA 2011;108:534–539 [CrossRef]
    [Google Scholar]
  62. Li YL, Chandrasekaran V, Carter SD, Woodward CL, Christensen DE et al. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. Elife 2016;5:e16269 [CrossRef]
    [Google Scholar]
  63. Pertel T, Hausmann S, Morger D, Züger S, Guerra J et al. Trim5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011;472:361–365 [CrossRef]
    [Google Scholar]
  64. Fletcher AJ, Christensen DE, Nelson C, Tan CP, Schaller T et al. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. EMBO J 2015;34:2078–2095 [CrossRef]
    [Google Scholar]
  65. Campbell EM, Weingart J, Sette P, Opp S, Sastri J et al. TRIM5α-Mediated ubiquitin chain conjugation is required for inhibition of HIV-1 reverse transcription and capsid destabilization. J Virol 2016;90:1849–1857 [CrossRef]
    [Google Scholar]
  66. Roganowicz MD, Komurlu S, Mukherjee S, Plewka J, Alam SL et al. TRIM5α SPRY/coiled-coil interactions optimize avid retroviral capsid recognition. PLoS Pathog 2017;13:e1006686 [CrossRef]
    [Google Scholar]
  67. Lamichhane R, Mukherjee S, Smolin N, Pauszek RF, Bradley M et al. Dynamic conformational changes in the rhesus TRIM5α dimer dictate the potency of HIV-1 restriction. Virology 2017;500:161–168 [CrossRef]
    [Google Scholar]
  68. Diaz-Griffero F, Qin XR, Hayashi F, Kigawa T, Finzi A et al. A B-box 2 surface patch important for TRIM5alpha self-association, capsid binding avidity, and retrovirus restriction. J Virol 2009;83:10737–10751 [CrossRef]
    [Google Scholar]
  69. Keown JR, Goldstone DC. Crystal structure of the TRIM5α Bbox2 domain from rhesus macaques describes a plastic oligomerisation interface. J Struct Biol 2016;195:282–285 [CrossRef]
    [Google Scholar]
  70. Goldstone DC, Walker PA, Calder LJ, Coombs PJ, Kirkpatrick J et al. Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc Natl Acad Sci USA 2014;111:9609–9614 [CrossRef]
    [Google Scholar]
  71. Yudina Z, Roa A, Johnson R, Biris N, de Souza Aranha Vieira DA et al. Ring dimerization links higher-order assembly of TRIM5α to synthesis of K63-linked polyubiquitin. Cell Rep 2015;12:788–797 [CrossRef]
    [Google Scholar]
  72. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009;37:937–953 [CrossRef]
    [Google Scholar]
  73. Chiramel AI, Meyerson NR, McNally KL, Broeckel RM, Montoya VR et al. TRIM5α restricts flavivirus replication by targeting the viral protease for proteasomal degradation. Cell Rep 2019;27:e32663269–3283 [CrossRef]
    [Google Scholar]
  74. Huang HH, Chen CS, Wang WH, Hsu SW, Tsai HH et al. TRIM5α promotes ubiquitination of RTA from epstein–barr virus to attenuate lytic progression. Front Microbiol 2016;7:2129 [CrossRef]
    [Google Scholar]
  75. Fan W, Wu M, Qian S, Zhou Y, Chen H et al. TRIM52 inhibits Japanese encephalitis virus replication by degrading the viral NS2A. Sci Rep 2016;6:33698 [CrossRef]
    [Google Scholar]
  76. Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM et al. Role of nonstructural protein NS2A in flavivirus assembly. J Virol 2008;82:4731–4741 [CrossRef]
    [Google Scholar]
  77. Wang K, Zou C, Wang X, Huang C, Feng T et al. Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. PLoS Pathog 2018;14:e1007287 [CrossRef]
    [Google Scholar]
  78. Wang S, Chen Y, Li C, Wu Y, Guo L et al. TRIM14 inhibits hepatitis C virus infection by SPRY domain-dependent targeted degradation of the viral NS5A protein. Sci Rep 2016;6:32336 [CrossRef]
    [Google Scholar]
  79. Yang C, Zhao X, Sun D, Yang L, Chong C et al. Interferon alpha (IFNα)-induced TRIM22 interrupts HCV replication by ubiquitinating NS5A. Cell Mol Immunol 2016;13:94–102 [CrossRef]
    [Google Scholar]
  80. Watkinson RE, McEwan WA, Tam JCH, Vaysburd M, James LC. Trim21 promotes cGAS and RIG-I sensing of viral genomes during infection by Antibody-Opsonized virus. PLoS Pathog 2015;11:e1005253 [CrossRef]
    [Google Scholar]
  81. Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B et al. A method for the acute and rapid degradation of endogenous proteins. Cell 2017;171:e16181692–1706 [CrossRef]
    [Google Scholar]
  82. Di Pietro A, Kajaste-Rudnitski A, Oteiza A, Nicora L, Towers GJ et al. Trim22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J Virol 2013;87:4523–4533 [CrossRef]
    [Google Scholar]
  83. Lian Q, Sun B. Interferons command TRIM22 to fight against viruses. Cell Mol Immunol 2017;14:794–796 [CrossRef]
    [Google Scholar]
  84. Pagani I, Di Pietro A, Oteiza A, Ghitti M, Mechti N et al. Mutations conferring increased sensitivity to tripartite motif 22 restriction accumulated progressively in the nucleoprotein of seasonal influenza A (H1N1) viruses between 1918 and 2009. mSphere 2018;3: [CrossRef]
    [Google Scholar]
  85. Wu X, Wang J, Wang S, Wu F, Chen Z et al. Inhibition of influenza A virus replication by TRIM14 via its multifaceted protein–protein interaction with NP. Front Microbiol 2019;10:344 [CrossRef]
    [Google Scholar]
  86. Patil G, Zhao M, Song K, Hao W, Bouchereau D et al. TRIM41-Mediated ubiquitination of nucleoprotein limits influenza A virus infection. J Virol 2018;92:e00905-18 [CrossRef]
    [Google Scholar]
  87. Fu B, Wang L, Ding H, Schwamborn JC, Li S et al. Trim32 senses and restricts influenza A virus by ubiquitination of PB1 polymerase. PLoS Pathog 2015;11:e1004960 [CrossRef]
    [Google Scholar]
  88. Ali H, Mano M, Braga L, Naseem A, Marini B et al. Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nat Commun 2019;10:926 [CrossRef]
    [Google Scholar]
  89. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012;149:214–231 [CrossRef]
    [Google Scholar]
  90. Qin Y, Liu Q, Tian S, Xie W, Cui J et al. TRIM9 short isoform preferentially promotes DNA and RNA virus-induced production of type I interferon by recruiting GSK3β to TBK1. Cell Res 2016;26:613–628 [CrossRef]
    [Google Scholar]
  91. Motwani M, Pesiridis S, Fitzgerald KA. Dna sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; [CrossRef]
    [Google Scholar]
  92. Seo GJ, Kim C, Shin WJ, Sklan EH, Eoh H et al. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun 2018;9:613 [CrossRef]
    [Google Scholar]
  93. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 2010;33:765–776 [CrossRef]
    [Google Scholar]
  94. Yang L, Wang L, Ketkar H, Ma J, Yang G et al. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat Commun 2018;9:2329 [CrossRef]
    [Google Scholar]
  95. Xue B, Li H, Guo M, Wang J, Xu Y et al. Trim21 promotes innate immune response to RNA viral infection through Lys27-linked polyubiquitination of MAVS. J Virol 2018;92:e00321-18 [CrossRef]
    [Google Scholar]
  96. Liu H, Li M, Song Y, Xu W. Trim21 restricts coxsackievirus B3 replication, cardiac and pancreatic injury via interacting with MAVS and positively regulating IRF3-Mediated type-I interferon production. Front Immunol 2018;9: [CrossRef]
    [Google Scholar]
  97. Fan W, Liu T, Li X, Zhou Y, Wu M et al. TRIM52: a nuclear TRIM protein that positively regulates the nuclear factor-kappa B signaling pathway. Mol Immunol 2017;82:114–122 [CrossRef]
    [Google Scholar]
  98. Krischuns T, Günl F, Henschel L, Binder M, Willemsen J et al. Phosphorylation of TRIM28 enhances the expression of IFN-β and proinflammatory cytokines during HPAIV infection of human lung epithelial cells. Front Immunol 2018;9:2229 [CrossRef]
    [Google Scholar]
  99. Fletcher AJ, James LC. Coordinated neutralization and immune activation by the cytosolic antibody receptor TRIM21. J Virol 2016;90:4856–4859 [CrossRef]
    [Google Scholar]
  100. Fletcher AJ, Mallery DL, Watkinson RE, Dickson CF, James LC. Sequential ubiquitination and deubiquitination enzymes synchronize the dual sensor and effector functions of TRIM21. Proc Natl Acad Sci USA 2015;112:10014–10019 [CrossRef]
    [Google Scholar]
  101. Gack MU, Shin YC, Joo CH, Urano T, Liang C et al. Trim25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007;446:916–920 [CrossRef]
    [Google Scholar]
  102. Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 2009;5:439–449 [CrossRef]
    [Google Scholar]
  103. Wang P, Arjona A, Zhang Y, Sultana H, Dai J et al. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nat Immunol 2010;11:912–919 [CrossRef]
    [Google Scholar]
  104. Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA et al. Species-Specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 2012;8:e1003059 [CrossRef]
    [Google Scholar]
  105. Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG et al. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 2012;11:528–537 [CrossRef]
    [Google Scholar]
  106. Santiago FW, Covaleda LM, Sanchez-Aparicio MT, Silvas JA, Diaz-Vizarreta AC et al. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol 2014;88:4572–4585 [CrossRef]
    [Google Scholar]
  107. Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 2015;350:217–221 [CrossRef]
    [Google Scholar]
  108. Okamoto M, Kouwaki T, Fukushima Y, Oshiumi H. Regulation of RIG-I activation by K63-linked polyubiquitination. Front Immunol 2017;8:1942 [CrossRef]
    [Google Scholar]
  109. Hu Y, Li W, Gao T, Cui Y, Jin Y et al. The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. J Virol 2017;91:e02143–02116 [CrossRef]
    [Google Scholar]
  110. Sánchez-Aparicio MT, Ayllón J, Leo-Macias A, Wolff T, García-Sastre A. Subcellular localizations of RIG-I, TRIM25, and MAVS complexes. J Virol 2017;91: [CrossRef]
    [Google Scholar]
  111. Sánchez-Aparicio MT, Feinman LJ, García-Sastre A, Shaw ML. Paramyxovirus V proteins interact with the RIG-I/TRIM25 regulatory complex and inhibit RIG-I signaling. J Virol 2018;92: [CrossRef]
    [Google Scholar]
  112. Ban J, Lee NR, Lee NJ, Lee JK, Quan FS et al. Human respiratory syncytial virus NS 1 targets TRIM25 to suppress RIG-I ubiquitination and subsequent RIG-I-mediated antiviral signaling. Viruses 2018;10:716 [CrossRef]
    [Google Scholar]
  113. Chiang C, Pauli EK, Biryukov J, Feister KF, Meng M et al. The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling. J Virol 2018;92:
    [Google Scholar]
  114. Lian H, Zang R, Wei J, Ye W, Hu M-M et al. The zinc-finger protein ZCCHC3 binds RNA and facilitates viral RNA sensing and activation of the RIG-I-like receptors. Immunity 2018;49:e435438–448 [CrossRef]
    [Google Scholar]
  115. Zhao K, Li LW, Jiang YF, Gao F, Zhang YJ et al. Nucleocapsid protein of porcine reproductive and respiratory syndrome virus antagonizes the antiviral activity of TRIM25 by interfering with TRIM25-mediated RIG-I ubiquitination. Vet Microbiol 2019;233:140–146 [CrossRef]
    [Google Scholar]
  116. Liu Z, Wu C, Pan Y, Liu H, Wang X et al. Ndr2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages. Sci Adv 2019;5:eaav0163 [CrossRef]
    [Google Scholar]
  117. Chen ST, Chen L, Lin DSC, Chen SY, Tsao YP et al. NLRP12 regulates anti-viral RIG-I activation via interaction with TRIM25. Cell Host Microbe 2019;25:e607602–616 [CrossRef]
    [Google Scholar]
  118. Lin H, Jiang M, Liu L, Yang Z, Ma Z et al. The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response. Nat Immunol 2019;20:812–823 [CrossRef]
    [Google Scholar]
  119. Li MMH, Lau Z, Cheung P, Aguilar EG, Schneider WM et al. Trim25 enhances the antiviral action of zinc-finger antiviral protein (ZAP). PLoS Pathog 2017;13:e1006145 [CrossRef]
    [Google Scholar]
  120. Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY et al. The structural basis of 5' triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 2010;18:1032–1043 [CrossRef]
    [Google Scholar]
  121. Ren X, Linehan MM, Iwasaki A, Pyle AM. Rig-I selectively discriminates against 5'-monophosphate RNA. Cell Rep 2019;26:e20142019–2027 [CrossRef]
    [Google Scholar]
  122. Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 2009;284:807–817 [CrossRef]
    [Google Scholar]
  123. Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M et al. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 2010;8:496–509 [CrossRef]
    [Google Scholar]
  124. Oshiumi H, Miyashita M, Matsumoto M, Seya T. A distinct role of Riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog 2013;9:e1003533 [CrossRef]
    [Google Scholar]
  125. Castanier C, Zemirli N, Portier A, Garcin D, Bidère N et al. Mavs ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol 2012;10:44 [CrossRef]
    [Google Scholar]
  126. Cadena C, Ahmad S, Xavier A, Willemsen J, Park S et al. Ubiquitin-Dependent and -independent roles of E3 ligase RIPLET in innate immunity. Cell 2019;177:e11161187–1200 [CrossRef]
    [Google Scholar]
  127. Shi Y, Yuan B, Zhu W, Zhang R, Li L et al. Ube2D3 and UBE2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity. Nat Commun 2017;8:15138 [CrossRef]
    [Google Scholar]
  128. Hayman TJ, Hsu AC, Kolesnik TB, Dagley LF, Willemsen J et al. RIPLET and not TRIM25 is required for endogenous RIG-I-dependent anti-viral responses. Immunol Cell Biol 2019;5: [CrossRef]
    [Google Scholar]
  129. Napolitano LM, Jaffray EG, Hay RT, Meroni G. Functional interactions between ubiquitin E2 enzymes and TRIM proteins. Biochem J 2011;434:309–319 [CrossRef]
    [Google Scholar]
  130. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E et al. Ikkε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003;4:491–496 [CrossRef]
    [Google Scholar]
  131. Chau TL, Gioia R, Gatot JS, Patrascu F, Carpentier I et al. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated?. Trends Biochem Sci 2008;33:171–180 [CrossRef]
    [Google Scholar]
  132. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003;300:1148–1151 [CrossRef]
    [Google Scholar]
  133. Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med 2007;13:460–469 [CrossRef]
    [Google Scholar]
  134. Hemmi H, Takeuchi O, Sato S, Yamamoto M, Kaisho T et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 2004;199:1641–1650 [CrossRef]
    [Google Scholar]
  135. Hu Y, Li W, Gao T, Cui Y, Jin Y et al. Sars coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. Journal of Virology 2017;JVI-02143
    [Google Scholar]
  136. Kuniyoshi K, Takeuchi O, Pandey S, Satoh T, Iwasaki H et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc Natl Acad Sci USA 2014;111:5646–5651 [CrossRef]
    [Google Scholar]
  137. Yan J, Li Q, Mao AP, Hu MM, Shu HB. TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J Mol Cell Biol 2014;6:154–163 [CrossRef]
    [Google Scholar]
  138. Sebastian S, Luban J. Trim5Alpha selectively binds a restriction-sensitive retroviral capsid. Retrovirology 2005;2:40 [CrossRef]
    [Google Scholar]
  139. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old World monkeys. Nature 2004;427:848–853 [CrossRef]
    [Google Scholar]
  140. Fletcher AJ, Vaysburd M, Maslen S, Zeng J, Skehel JM et al. Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling. Cell Host Microbe 2018;24:e766761–775 [CrossRef]
    [Google Scholar]
  141. Sundquist WI, Pornillos O. Retrovirus restriction by TRIM5α: ringside at a cage fight. Cell Host Microbe 2018;24:751–753 [CrossRef]
    [Google Scholar]
  142. Turrini F, Marelli S, Kajaste-Rudnitski A, Lusic M, Van Lint C et al. Hiv-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter. Retrovirology 2015;12:104 [CrossRef]
    [Google Scholar]
  143. Vicenzi E, Poli G. The interferon-stimulated gene TRIM22: a double-edged sword in HIV-1 infection. Cytokine Growth Factor Rev 2018;40:40–47 [CrossRef]
    [Google Scholar]
  144. Turrini F, Saliu F, Forlani G, Das AT, Van Lint C et al. Interferon-Inducible TRIM22 contributes to maintenance of HIV-1 proviral latency in T cell lines. Virus Res 2019;269:197631 [CrossRef]
    [Google Scholar]
  145. Masroori N, Merindol N, Berthoux L. The interferon-induced antiviral protein PML (TRIM19) promotes the restriction and transcriptional silencing of lentiviruses in a context-specific, isoform-specific fashion. Retrovirology 2016;13:19 [CrossRef]
    [Google Scholar]
  146. Kahle T, Volkmann B, Eissmann K, Herrmann A, Schmitt S et al. TRIM19/PML restricts HIV infection in a cell type-dependent manner. Viruses 2016;8:2 [CrossRef]
    [Google Scholar]
  147. Forlani G, Tosi G, Turrini F, Poli G, Vicenzi E et al. Tripartite motif-containing protein 22 interacts with class II transactivator and orchestrates its recruitment in nuclear bodies containing TRIM19/PML and cyclin T1. Front Immunol 2017;8:564 [CrossRef]
    [Google Scholar]
  148. Langevin C, Levraud JP, Boudinot P. Fish antiviral tripartite motif (TRIM) proteins. Fish Shellfish Immunol 2019;86:724–733 [CrossRef]
    [Google Scholar]
  149. Wang W, Huang Y, Yu Y, Yang Y, Xu M et al. Fish TRIM39 regulates cell cycle progression and exerts its antiviral function against iridovirus and nodavirus. Fish Shellfish Immunol 2016;50:1–10 [CrossRef]
    [Google Scholar]
  150. Yang Y, Huang Y, Yu Y, Yang M, Zhou S et al. Ring domain is essential for the antiviral activity of TRIM25 from orange spotted grouper. Fish Shellfish Immunol 2016;55:304–314 [CrossRef]
    [Google Scholar]
  151. Yu Y, Huang X, Liu J, Zhang J, Hu Y et al. Fish TRIM32 functions as a critical antiviral molecule against iridovirus and nodavirus. Fish Shellfish Immunol 2017;60:33–43 [CrossRef]
    [Google Scholar]
  152. Chen B, Huo S, Liu W, Wang F, Lu Y et al. Fish-Specific finTRIM FTR36 triggers IFN pathway and mediates inhibition of viral replication. Fish Shellfish Immunol 2019;84:876–884 [CrossRef]
    [Google Scholar]
  153. Langevin C, Aleksejeva E, Houel A, Briolat V, Torhy C et al. FTR83, a member of the large fish-specific finTRIM family, triggers IFN pathway and counters viral infection. Front Immunol 2017;8: [CrossRef]
    [Google Scholar]
  154. van der Aa LM, Jouneau L, Laplantine E, Bouchez O, Van Kemenade L et al. FinTRIMs, fish virus-inducible proteins with E3 ubiquitin ligase activity. Dev Comp Immunol 2012;36:433–441 [CrossRef]
    [Google Scholar]
  155. Sarute N, Ibrahim N, Medegan Fagla B, Lavanya M, Cuevas C et al. Trim2, a novel member of the antiviral family, limits new World arenavirus entry. PLoS Biol 2019;17:e3000137 [CrossRef]
    [Google Scholar]
  156. Full F, van Gent M, Sparrer KMJ, Chiang C, Zurenski MA et al. Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nat Microbiol 2019;4:164–176 [CrossRef]
    [Google Scholar]
  157. Zheng F, Xu N, Zhang Y. Trim27 promotes hepatitis C virus replication by suppressing type I interferon response. Inflammation 2019;42:1317–1325 [CrossRef]
    [Google Scholar]
  158. Zheng Q, Hou J, Zhou Y, Yang Y, Xie B et al. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res 2015;25:1121–1136 [CrossRef]
    [Google Scholar]
  159. Cai J, Chen HY, Peng SJ, Meng JL, Wang Y et al. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling. Faseb J 2018;32:5238–5249 [CrossRef]
    [Google Scholar]
  160. Narayan K, Waggoner L, Pham ST, Hendricks GL, Waggoner SN et al. TRIM13 is a negative regulator of MDA5-mediated type I interferon production. J Virol 2014;88:10748–10757 [CrossRef]
    [Google Scholar]
  161. Zhao C, Jia M, Song H, Yu Z, Wang W et al. The E3 ubiquitin ligase TRIM40 attenuates antiviral immune responses by targeting MDA5 and RIG-I. Cell Rep 2017;21:1613–1623 [CrossRef]
    [Google Scholar]
  162. Xing J, Weng L, Yuan B, Wang Z, Jia L et al. Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nat Immunol 2016;17:1373–1380 [CrossRef]
    [Google Scholar]
  163. Xing J, Zhang A, Zhang H, Wang J, Li XC et al. Trim29 promotes DNA virus infections by inhibiting innate immune response. Nat Commun 2017;8:945 [CrossRef]
    [Google Scholar]
  164. Xing J, Zhang A, Minze LJ, Li XC, Zhang Z. Trim29 negatively regulates the type I IFN production in response to RNA virus. J Immunol 2018;201:183–192 [CrossRef]
    [Google Scholar]
  165. Li Q, Lin L, Tong Y, Liu Y, Mou J et al. Trim29 negatively controls antiviral immune response through targeting sting for degradation. Cell Discov 2018;4:13 [CrossRef]
    [Google Scholar]
  166. Shi M, Cho H, Inn K-S, Yang A, Zhao Z et al. Negative regulation of NF-kappaB activity by brain-specific tripartite motif protein 9. Nat Commun 2014;5:4820 [CrossRef]
    [Google Scholar]
  167. Liu Y, Li J, Wang F, Mao F, Zhang Y et al. The first molluscan TRIM9 is involved in the negative regulation of NF-κB activity in the Hong Kong oyster, Crassostrea hongkongensis. Fish Shellfish Immunol 2016;56:106–110 [CrossRef]
    [Google Scholar]
  168. Sun M, Li S, Yu K, Xiang J, Li F. An E3 ubiquitin ligase TRIM9 is involved in WSSV infection via interaction with beta-TrCP. Dev Comp Immunol 2019;97:57–63 [CrossRef]
    [Google Scholar]
  169. Hu MM, Shu HB. Multifaceted roles of TRIM38 in innate immune and inflammatory responses. Cell Mol Immunol 2017;14:331–338 [CrossRef]
    [Google Scholar]
  170. Hu MM, Xie XQ, Yang Q, Liao CY, Ye W et al. TRIM38 negatively regulates TLR3/4-Mediated innate immune and inflammatory responses by two sequential and distinct mechanisms. J Immunol 2015;195:4415–4425 [CrossRef]
    [Google Scholar]
  171. Hu MM, Yang Q, Zhang J, Liu SM, Zhang Y et al. TRIM38 inhibits TNFα- and IL-1β-triggered NF-κB activation by mediating lysosome-dependent degradation of TAB2/3. Proc Natl Acad Sci USA 2014;111:1509–1514 [CrossRef]
    [Google Scholar]
  172. Kim K, Kim JH, Kim I, Seong S, Kim N. TRIM38 regulates NF-κB activation through TAB2 degradation in osteoclast and osteoblast differentiation. Bone 2018;113:17–28 [CrossRef]
    [Google Scholar]
  173. Bharaj P, Wang YE, Dawes BE, Yun TE, Park A et al. The matrix protein of Nipah virus targets the E3-ubiquitin ligase TRIM6 to inhibit the IKKε kinase-mediated type-I IFN antiviral response. PLoS Pathog 2016;12:e1005880 [CrossRef]
    [Google Scholar]
  174. Liu X, Matrenec R, Gack MU, He B. Disassembly of the TRIM23-TBK1 complex by the US11 protein of herpes simplex virus 1 impairs autophagy. J Virol 2019;93: [CrossRef]
    [Google Scholar]
  175. Scherer M, Schilling EM, Stamminger T. The human CMV IE1 protein: an offender of PML nuclear bodies. Adv Anat Embryol Cell Biol 2017;223:77–94 [CrossRef]
    [Google Scholar]
  176. Lim KH, Park ES, Kim DH, Cho KC, Kim KP et al. Suppression of interferon-mediated anti-HBV response by single CpG methylation in the 5'-UTR of TRIM22. Gut 2018;67:166–178 [CrossRef]
    [Google Scholar]
  177. Cui J, Xu X, Li Y, Hu X, Xie Y et al. TRIM14 expression is regulated by IRF-1 and IRF-2. FEBS Open Bio 2019;9:14131420 [CrossRef]
    [Google Scholar]
  178. Van Valen L. A new evolutionary law. Evol Theory 1973;1:1–30
    [Google Scholar]
  179. Liow LH, Van Valen L, Stenseth NC. Red Queen: from populations to taxa and communities. Trends Ecol Evol 2011;26:349–358 [CrossRef]
    [Google Scholar]
  180. Bharaj P, Atkins C, Luthra P, Giraldo MI, Dawes BE et al. The host E3-ubiquitin ligase TRIM6 ubiquitinates the Ebola virus VP35 protein and promotes virus replication. J Virol 2017;91: [CrossRef]
    [Google Scholar]
  181. Han J, Perez JT, Chen C, Li Y, Benitez A et al. Genome-Wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Rep 2018;23:596–607 [CrossRef]
    [Google Scholar]
  182. Laurent-Rolle M, Morrison J, Rajsbaum R, Macleod JML, Pisanelli G et al. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 2014;16:314–327 [CrossRef]
    [Google Scholar]
  183. Arimoto K, Funami K, Saeki Y, Tanaka K, Okawa K et al. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proc Natl Acad Sci USA 2010;107:15856–15861 [CrossRef]
    [Google Scholar]
  184. Le Sommer C, Barrows NJ, Bradrick SS, Pearson JL, Garcia-Blanco MA. G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication. PLoS Negl Trop Dis 2012;6:e1820 [CrossRef]
    [Google Scholar]
  185. Orchard RC, Sullender ME, Dunlap BF, Balce DR, Doench JG et al. Identification of Antinorovirus genes in human cells using genome-wide CRISPR activation screening. J Virol 2019;93:e01324–01318 [CrossRef]
    [Google Scholar]
  186. Chakraborty A, Diefenbacher ME, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun 2015;6:6782 [CrossRef]
    [Google Scholar]
  187. Lu M, Zhu X, Yang Z, Zhang W, Sun Z et al. E3 ubiquitin ligase tripartite motif 7 positively regulates the TLR4-mediated immune response via its E3 ligase domain in macrophages. Mol Immunol 2019;109:126–133 [CrossRef]
    [Google Scholar]
  188. Luthra P, Ramanan P, Mire CE, Weisend C, Tsuda Y et al. Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe 2013;14:74–84 [CrossRef]
    [Google Scholar]
  189. Prins KC, Cárdenas WB, Basler CF. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol 2009;83:3069–3077 [CrossRef]
    [Google Scholar]
  190. Mühlberger E. Filovirus replication and transcription. Future Virol 2007;2:205–215 [CrossRef]
    [Google Scholar]
  191. Kirui J, Mondal A, Mehle A. Ubiquitination upregulates influenza virus polymerase function. J Virol 2016;90:10906–10914 [CrossRef]
    [Google Scholar]
  192. Lin YC, Jeng KS, Lai MMC. CNOT4-Mediated ubiquitination of influenza A virus nucleoprotein promotes viral RNA replication. mBio 2017;8:e00597–00517 [CrossRef]
    [Google Scholar]
  193. Wu H, Shi L, Zhang Y, Peng X, Zheng T et al. Ubiquitination is essential for avibirnavirus replication by supporting VP1 polymerase activity. J Virol 2019;93:e01899–01818 [CrossRef]
    [Google Scholar]
  194. Han K, Zhao D, Liu Y, Liu Q, Huang X et al. The ubiquitin-proteasome system is necessary for the replication of duck tembusu virus. Microb Pathog 2019;132:362–368 [CrossRef]
    [Google Scholar]
  195. Su WC, Yu WY, Huang SH, Lai MMC. Ubiquitination of the cytoplasmic domain of influenza A virus M2 protein is crucial for production of infectious virus particles. J Virol 2018;92:e01972–01917 [CrossRef]
    [Google Scholar]
  196. Kumar S, Barouch-Bentov R, Xiao F, Schor S, Pu S et al. MARCH8 Ubiquitinates the hepatitis C virus nonstructural 2 protein and mediates viral envelopment. Cell Rep 2019;26:e18051800–1814 [CrossRef]
    [Google Scholar]
  197. Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P et al. Influenza A virus uses the aggresome processing machinery for host cell entry. Science 2014;346:473–477 [CrossRef]
    [Google Scholar]
  198. Rajsbaum R, García-Sastre A, Virology GSA. Virology. unanchored ubiquitin in virus uncoating. Science 2014;346:427–428 [CrossRef]
    [Google Scholar]
  199. Jiang X, Kinch LN, Brautigam CA, Chen X, Du F et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 2012;36:959–973 [CrossRef]
    [Google Scholar]
  200. McEwan WA, Tam JCH, Watkinson RE, Bidgood SR, Mallery DL et al. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol 2013;14:327–336 [CrossRef]
    [Google Scholar]
  201. Zeng G, Lian C, Yang P, Zheng M, Ren H et al. E3-Ubiquitin ligase TRIM6 aggravates myocardial ischemia/reperfusion injury via promoting STAT1-dependent cardiomyocyte apoptosis. Aging 2019;11:3536–3550 [CrossRef]
    [Google Scholar]
  202. Larochelle S, Larochelle S. CRISPR–Cas goes RNA. Nat Methods 2018;15:312 [CrossRef]
    [Google Scholar]
  203. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN et al. Transcriptome engineering with RNA-Targeting type VI-D CRISPR effectors. Cell 2018;173:e614665–676 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001341
Loading
/content/journal/jgv/10.1099/jgv.0.001341
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error