1887

Abstract

Using random amplification and reverse transcription-PCR, a novel RNA virus was detected in sera of domestic ducks. The full genome of the virus was determined for three strains, identifying the first hepacivirus-like flavivirus in birds. The virus, that we tentatively named duck hepacivirus-like virus (DuHV), possesses several unique molecular features, such as possession of the largest hepacivirus-like polyprotein gene and a -like internal ribosome entry site. Sequence comparisons and phylogenetic and sliding-window analyses indicated that DuHV is most closely related to, but highly divergent from, the known hepaciviruses. DuHV was detected in 69.7 % of 185 serum samples from four duck species and in 31 of 33 flocks from five provinces of China, reflecting a high prevalence in duck populations and a wide geographical distribution. The detection of DuHV in the same flock in November 2018 and April 2019 suggested that persistent infection can be established in the infected ducks.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001298
2019-08-01
2019-09-23
Loading full text...

Full text loading...

References

  1. Smith DB, Becher P, Bukh J, Gould EA, Meyers G et al. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J Gen Virol 2016;97:2894–2907 [CrossRef]
    [Google Scholar]
  2. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G et al. ICTV Virus Taxonomy Profile: Flaviviridae. J Gen Virol 2017;98:2–3 [CrossRef]
    [Google Scholar]
  3. Simmonds P, Becher P, Collett MS, Gould EA, Heinz FX et al. Flaviviridae In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. (editors) Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses San Diego: Elsevier Academic Press; 2011; pp1004–1020
    [Google Scholar]
  4. Deinhardt F, Holmes AW, Capps RB, Popper H. Studies on the transmission of human viral hepatitis to marmoset monkeys. I. transmission of disease, serial passages, and description of liver lesions. J Exp Med 1967;125:673–688 [CrossRef]
    [Google Scholar]
  5. Simons JN, Pilot-Matias TJ, Leary TP, Dawson GJ, Desai SM et al. Identification of two flavivirus-like genomes in the GB hepatitis agent. Proc Natl Acad Sci U S A 1995;92:3401–3405 [CrossRef]
    [Google Scholar]
  6. Lauck M, Sibley SD, Lara J, Purdy MA, Khudyakov Y et al. A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild old world primate. J Virol 2013;87:8971–8981 [CrossRef]
    [Google Scholar]
  7. Sibley SD, Lauck M, Bailey AL, Hyeroba D, Tumukunde A et al. Discovery and characterization of distinct simian pegiviruses in three wild African old World monkey species. PLoS One 2014;9:e98569 [CrossRef]
    [Google Scholar]
  8. Burbelo PD, Dubovi EJ, Simmonds P, Medina JL, Henriquez JA et al. Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 2012;86:6171–6178 [CrossRef]
    [Google Scholar]
  9. Lyons S, Kapoor A, Sharp C, Schneider BS, Wolfe ND et al. Nonprimate hepaciviruses in domestic horses, United Kingdom. Emerg Infect Dis 2012;18:1976–1982 [CrossRef]
    [Google Scholar]
  10. Walter S, Rasche A, Moreira-Soto A, Pfaender S, Bletsa M et al. Differential infection patterns and recent evolutionary origins of equine hepaciviruses in donkeys. J Virol 2017;91:e01711–e01716 [CrossRef]
    [Google Scholar]
  11. Baechlein C, Fischer N, Grundhoff A, Alawi M, Indenbirken D et al. Identification of a novel Hepacivirus in domestic cattle from Germany. J Virol 2015;89:7007–7015 [CrossRef]
    [Google Scholar]
  12. Corman VM, Grundhoff A, Baechlein C, Fischer N, Gmyl A et al. Highly divergent hepaciviruses from African cattle. J Virol 2015;89:5876–5882 [CrossRef]
    [Google Scholar]
  13. Kapoor A, Simmonds P, Scheel TKH, Hjelle B, Cullen JM et al. Identification of rodent homologs of hepatitis C virus and Pegiviruses. MBio 2013;4:e00216–e00213 [CrossRef]
    [Google Scholar]
  14. Drexler JF, Corman VM, Müller MA, Lukashev AN, Gmyl A et al. Evidence for novel hepaciviruses in rodents. PLoS Pathog 2013;9:e1003438 [CrossRef]
    [Google Scholar]
  15. Firth C, Bhat M, Firth MA, Williams SH, Frye MJ et al. Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. MBio 2014;5:e01933–01914 [CrossRef]
    [Google Scholar]
  16. Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natl Acad Sci U S A 2013;110:8194–8199 [CrossRef]
    [Google Scholar]
  17. Shi M, Lin XD, Chen X, Tian JH, Chen LJ et al. The evolutionary history of vertebrate RNA viruses. Nature 2018;556:197–202 [CrossRef]
    [Google Scholar]
  18. Cao Z, Zhang C, Liu Y, Liu Y, Ye W et al. Tembusu virus in ducks, China. Emerg Infect Dis 2011;17:1873–1875 [CrossRef]
    [Google Scholar]
  19. Yan P, Li G, Wu X, Yan L, Teng Q et al. Rapid identification of duck tembusu virus by the nested RT-PCR. Chin J Anim Infect Dis 2011;19:34–37
    [Google Scholar]
  20. Lee MS, Chang PC, Shien JH, Cheng MC, Shieh HK. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J Virol Methods 2001;97:13–22 [CrossRef]
    [Google Scholar]
  21. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A. Cloning of a human parvovirus by molecular screening of respiratory tract samplesCloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Nat Acad Sci U S A 2005;102:12891–12896
    [Google Scholar]
  22. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005;309:1577–1581 [CrossRef]
    [Google Scholar]
  23. Tanaka T, Kato N, Cho MJ, Shimotohno K. A novel sequence found at the 3' terminus of hepatitis C virus genome. Biochem Biophys Res Commun 1995;215:744–749 [CrossRef]
    [Google Scholar]
  24. Simons JN, Desai SM, Schultz DE, Lemon SM, Mushahwar IK. Translation initiation in GB viruses A and C: evidence for internal ribosome entry and implications for genome organization. J Virol 1996;70:6126–6135
    [Google Scholar]
  25. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  26. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415
    [Google Scholar]
  27. De Rijk P, Wuyts J, De Wachter R. RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics 2003;19:299–300 [CrossRef]
    [Google Scholar]
  28. Xu Z, Choi J, Yen TS, Lu W, Strohecker A et al. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. Embo J 2001;20:3840–3848 [CrossRef]
    [Google Scholar]
  29. Shi M, Lin XD, Vasilakis N, Tian JH, Li C-X et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related Viruses. J Virol 2016;90:659–669 [CrossRef]
    [Google Scholar]
  30. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res 2004;32:W327–W331 [CrossRef]
    [Google Scholar]
  31. Grakoui A, McCourt DW, Wychowski C, Feinstone SM, Rice CM. A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A 1993;90:10583–10587 [CrossRef]
    [Google Scholar]
  32. Hijikata M, Mizushima H, Akagi T, Mori S, Kakiuchi N et al. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol 1993;67:4665–4675
    [Google Scholar]
  33. Bazan JF, Fletterick RJ. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 1989;171:637–639 [CrossRef]
    [Google Scholar]
  34. Kim JL, Morgenstern KA, Lin C, Fox T, Dwyer MD et al. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 1996;87:343–355 [CrossRef]
    [Google Scholar]
  35. Love RA, Parge HE, Wickersham JA, Hostomsky Z, Habuka N et al. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 1996;87:331–342 [CrossRef]
    [Google Scholar]
  36. Stapleton JT, Foung S, Muerhoff AS, Bukh J, Simmonds P. The GB viruses: a review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus within the family Flaviviridae. J Gen Virol 2011;92:233–246 [CrossRef]
    [Google Scholar]
  37. Tellinghuisen TL, Marcotrigiano J, Gorbalenya AE, Rice CM. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J Biol Chem 2004;279:48576–48587 [CrossRef]
    [Google Scholar]
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef]
    [Google Scholar]
  39. Simmonds P. SSE: a nucleotide and amino acid sequence analysis platform. BMC Res Notes 2012;5:50–59 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001298
Loading
/content/journal/jgv/10.1099/jgv.0.001298
Loading

Data & Media loading...

Supplementary material 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error