1887

Abstract

Parvovirus B19 (B19V) possesses a linear single-stranded DNA genome of either positive or negative polarity. Due to intramolecular sequence homologies, either strand may theoretically be folded in several alternative ways. Viral DNA, when extracted from virions by several procedures, presents as linear single-stranded and/or linear double-stranded molecules, except when one particular commercial kit is used. This protocol yields DNA with an aberrant electrophoretic mobility in addition to linear double-stranded molecules, but never any single-stranded molecules. This peculiar kind of DNA was found in all plasma or serum samples tested and so we decided to analyse its secondary structure. In line with our results for one- and two-dimensional electrophoresis, mobility shift assays, DNA preparation by an in-house extraction method with moderate denaturing conditions, density gradient ultracentrifugation, DNA digestion experiments and competition hybridization assays, we conclude that (i) the unique internal portions of this distinctive single-stranded molecules are folded into tight tangles and (ii) the two terminal redundant regions are associated with each other, yielding non-covalently closed pseudo-circular molecules stabilized by a short (18 nucleotides) intramolecular stem, whereas the extreme 3′- and 5′-ends are folded back on themselves, forming a structure resembling a twin hairpin. The question arises as to whether this fairly unstable structure represents the encapsidated genome structure. The answer to this question remains quite relevant in terms of comprehending the initiation and end of B19V genome replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001253
2019-03-29
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/100/5/812.html?itemId=/content/journal/jgv/10.1099/jgv.0.001253&mimeType=html&fmt=ahah

References

  1. Qiu J, Söderlund-Venermo M, Young NS. Human Parvoviruses. Clin Microbiol Rev 2017; 30:43–113 [View Article][PubMed]
    [Google Scholar]
  2. Cassinotti P, Burtonboy G, Fopp M, Siegl G. Evidence for persistence of human parvovirus B19 DNA in bone marrow. J Med Virol 1997; 53:229–232 [View Article][PubMed]
    [Google Scholar]
  3. Eis-Hübinger AM, Reber U, Abdul-Nour T, Glatzel U, Lauschke H et al. Evidence for persistence of parvovirus B19 DNA in livers of adults. J Med Virol 2001; 65:395–401 [View Article][PubMed]
    [Google Scholar]
  4. Norja P, Hokynar K, Aaltonen LM, Chen R, Ranki A et al. Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci USA 2006; 103:7450–7453 [View Article][PubMed]
    [Google Scholar]
  5. Mortimer PP, Luban NL, Kelleher JF, Cohen BJ. Transmission of serum parvovirus-like virus by clotting-factor concentrates. Lancet 1983; 2:482–484 [View Article][PubMed]
    [Google Scholar]
  6. Zakrzewska K, Azzi A, Patou G, Morfini M, Rafanelli D et al. Human parvovirus B19 in clotting factor concentrates: B19 DNA detection by the nested polymerase chain reaction. Br J Haematol 1992; 81:407–412 [View Article][PubMed]
    [Google Scholar]
  7. Lefrère JJ, Mariotti M, Thauvin M. B19 parvovirus DNA in solvent/detergent-treated anti-haemophilia concentrates. Lancet 1994; 343:211–212 [View Article][PubMed]
    [Google Scholar]
  8. Eis-Hübinger AM, Sasowski U, Brackmann HH, Kaiser R, Matz B et al. Parvovirus B19 DNA is frequently present in recombinant coagulation factor VIII products. Thromb Haemost 1996; 76:1120 [View Article][PubMed]
    [Google Scholar]
  9. Blümel J, Schmidt I, Effenberger W, Seitz H, Willkommen H et al. Parvovirus B19 transmission by heat-treated clotting factor concentrates. Transfusion 2002; 42:1473–1481 [View Article][PubMed]
    [Google Scholar]
  10. Marano G, Vaglio S, Pupella S, Facco G, Calizzani G et al. Human parvovirus B19 and blood product safety: a tale of twenty years of improvements. Blood Transfus 2015; 13:184–196 [View Article][PubMed]
    [Google Scholar]
  11. Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger AM et al. ICTV virus taxonomy profile: Parvoviridae. J Gen Virol 2019; 100:367–368 [View Article][PubMed]
    [Google Scholar]
  12. Ozawa K, Young N. Characterization of capsid and noncapsid proteins of B19 parvovirus propagated in human erythroid bone marrow cell cultures. J Virol 1987; 61:2627–2630[PubMed]
    [Google Scholar]
  13. Dorsch S, Liebisch G, Kaufmann B, von Landenberg P, Hoffmann JH et al. The VP1 unique region of parvovirus B19 and its constituent phospholipase A2-like activity. J Virol 2002; 76:2014–2018 [View Article][PubMed]
    [Google Scholar]
  14. Clewley JP. Biochemical characterization of a human parvovirus. J Gen Virol 1984; 65:241–245 [View Article][PubMed]
    [Google Scholar]
  15. Cotmore SF, Tattersall P. Characterization and molecular cloning of a human parvovirus genome. Science 1984; 226:1161–1165 [View Article][PubMed]
    [Google Scholar]
  16. Shade RO, Blundell MC, Cotmore SF, Tattersall P, Astell CR. Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J Virol 1986; 58:921–936[PubMed]
    [Google Scholar]
  17. Deiss V, Tratschin JD, Weitz M, Siegl G. Cloning of the human parvovirus B19 genome and structural analysis of its palindromic termini. Virology 1990; 175:247–254 [View Article][PubMed]
    [Google Scholar]
  18. Brown KE, Anderson SM, Young NS. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 1993; 262:114–117 [View Article][PubMed]
    [Google Scholar]
  19. Pasquinelli G, Bonvicini F, Foroni L, Salfi N, Gallinella G. Placental endothelial cells can be productively infected by Parvovirus B19. J Clin Virol 2009; 44:33–38 [View Article][PubMed]
    [Google Scholar]
  20. von Kietzell K, Pozzuto T, Heilbronn R, Grössl T, Fechner H et al. Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q. J Virol 2014; 88:8102–8115 [View Article][PubMed]
    [Google Scholar]
  21. Munakata Y, Kato I, Saito T, Kodera T, Ishii KK et al. Human parvovirus B19 infection of monocytic cell line U937 and antibody-dependent enhancement. Virology 2006; 345:251–257 [View Article][PubMed]
    [Google Scholar]
  22. Ozawa K, Kurtzman G, Young N. Replication of the B19 parvovirus in human bone marrow cell cultures. Science 1986; 233:883–886 [View Article][PubMed]
    [Google Scholar]
  23. Blümel J, Eis-Hübinger AM, Stühler A, Bönsch C, Gessner M et al. Characterization of Parvovirus B19 genotype 2 in KU812Ep6 cells. J Virol 2005; 79:14197–14206 [View Article][PubMed]
    [Google Scholar]
  24. Wong S, Zhi N, Filippone C, Keyvanfar K, Kajigaya S et al. Ex vivo-generated CD36+ erythroid progenitors are highly permissive to human parvovirus B19 replication. J Virol 2008; 82:2470–2476 [View Article][PubMed]
    [Google Scholar]
  25. Bua G, Manaresi E, Bonvicini F, Gallinella G. Parvovirus B19 replication and expression in differentiating erythroid progenitor cells. PLoS One 2016; 11:e0148547 [View Article][PubMed]
    [Google Scholar]
  26. Luo Y, Qiu J. Human parvovirus B19: a mechanistic overview of infection and DNA replication. Future Virol 2015; 10:155–167 [View Article][PubMed]
    [Google Scholar]
  27. Zhi N, Zádori Z, Brown KE, Tijssen P. Construction and sequencing of an infectious clone of the human parvovirus B19. Virology 2004; 318:142–152 [View Article][PubMed]
    [Google Scholar]
  28. Filippone C, Zhi N, Wong S, Lu J, Kajigaya S et al. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones. Virology 2008; 374:444–452 [View Article][PubMed]
    [Google Scholar]
  29. Guan W, Wong S, Zhi N, Qiu J. The genome of human parvovirus b19 can replicate in nonpermissive cells with the help of adenovirus genes and produces infectious virus. J Virol 2009; 83:9541–9553 [View Article][PubMed]
    [Google Scholar]
  30. Winter K, von Kietzell K, Heilbronn R, Pozzuto T, Fechner H et al. Roles of E4orf6 and VA I RNA in adenovirus-mediated stimulation of human parvovirus B19 DNA replication and structural gene expression. J Virol 2012; 86:5099–5109 [View Article][PubMed]
    [Google Scholar]
  31. Tewary SK, Zhao H, Deng X, Qiu J, Tang L. The human parvovirus B19 non-structural protein 1 N-terminal domain specifically binds to the origin of replication in the viral DNA. Virology 2014; 449:297–303 [View Article][PubMed]
    [Google Scholar]
  32. Kaufmann B, Simpson AA, Rossmann MG. The structure of human parvovirus B19. Proc Natl Acad Sci USA 2004; 101:11628–11633 [View Article][PubMed]
    [Google Scholar]
  33. Kaufmann B, Chipman PR, Kostyuchenko VA, Modrow S, Rossmann MG. Visualization of the externalized VP2 N termini of infectious human parvovirus B19. J Virol 2008; 82:7306–7312 [View Article][PubMed]
    [Google Scholar]
  34. Quattrocchi S, Ruprecht N, Bönsch C, Bieli S, Zürcher C et al. Characterization of the early steps of human parvovirus B19 infection. J Virol 2012; 86:9274–9284 [View Article][PubMed]
    [Google Scholar]
  35. Cotmore SF, Tattersall P. A rolling-hairpin strategy: basic mechanisms of DNA replication in the parvoviruses, p. 171-181. In Kerr J, Cotmore SF, Bloom ME, Linden RM, Parrish CR et al. (editors) Parvoviruses London, United Kingdom: Hodder Arnold; 2005
    [Google Scholar]
  36. Astell CR, Blundell MC. Sequence of the right hand terminal palindrome of the human B19 parvovirus genome has the potential to form a 'stem plus arms' structure. Nucleic Acids Res 1989; 17:5857 [View Article][PubMed]
    [Google Scholar]
  37. Neelakanta PS, Chatterjee S, Thengum-Pallil GA. Computation of entropy and energetics profiles of a single-stranded viral DNA. Int J Bioinform Res Appl 2011; 7:239–261 [View Article][PubMed]
    [Google Scholar]
  38. Tattersall P, Ward DC. Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. Nature 1976; 263:106–109 [View Article][PubMed]
    [Google Scholar]
  39. Matz B, Kupfer B, Kreil TR, Eis-Hübinger AM. Influence of extraction protocol on physical properties of parvovirus B19 DNA. J Clin Microbiol 2010; 48:4595–4597 [View Article][PubMed]
    [Google Scholar]
  40. Zuccheri G, Bergia A, Gallinella G, Musiani M, Samorì B. Scanning force microscopy study on a single-stranded DNA: the genome of parvovirus B19. Chembiochem 2001; 2:199–204 [View Article][PubMed]
    [Google Scholar]
  41. Agbandje M, Kajigaya S, McKenna R, Young NS, Rossmann MG. The structure of human parvovirus B19 at 8 A resolution. Virology 1994; 203:106–115 [View Article][PubMed]
    [Google Scholar]
  42. Kunkel LM, Monaco AP, Middlesworth W, Ochs HD, Latt SA. Specific cloning of DNA fragments absent from the DNA of a male patient with an X chromosome deletion. Proc Natl Acad Sci USA 1985; 82:4778–4782 [View Article][PubMed]
    [Google Scholar]
  43. Wakamatsu C, Takakura F, Kojima E, Kiriyama Y, Goto N et al. Screening of blood donors for human parvovirus B19 and characterization of the results. Vox Sang 1999; 76:14–21 [View Article][PubMed]
    [Google Scholar]
  44. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM et al. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 1990; 28:495–503[PubMed]
    [Google Scholar]
  45. Ramakrishnan S, Krainer G, Grundmeier G, Schlierf M, Keller A. Structural stability of DNA origami nanostructures in the presence of chaotropic agents. Nanoscale 2016; 8:10398–10405 [View Article][PubMed]
    [Google Scholar]
  46. Tsao J, Chapman MS, Agbandje M, Keller W, Smith K et al. The three-dimensional structure of canine parvovirus and its functional implications. Science 1991; 251:1456–1464 [View Article][PubMed]
    [Google Scholar]
  47. Llamas-Saiz AL, Agbandje-McKenna M, Wikoff WR, Bratton J, Tattersall P et al. Structure determination of minute virus of mice. Acta Crystallogr D Biol Crystallogr 1997; 53:93–102 [View Article][PubMed]
    [Google Scholar]
  48. Agbandje-McKenna M, Llamas-Saiz AL, Wang F, Tattersall P, Rossmann MG. Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure 1998; 6:1369–1381 [View Article][PubMed]
    [Google Scholar]
  49. King JA, Dubielzig R, Grimm D, Kleinschmidt JA. DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J 2001; 20:3282–3291 [View Article][PubMed]
    [Google Scholar]
  50. Farr GA, Tattersall P. A conserved leucine that constricts the pore through the capsid fivefold cylinder plays a central role in parvoviral infection. Virology 2004; 323:243–256 [View Article][PubMed]
    [Google Scholar]
  51. Plevka P, Hafenstein S, Li L, D'Abrgamo A, Cotmore SF et al. Structure of a packaging-defective mutant of minute virus of mice indicates that the genome is packaged via a pore at a 5-fold axis. J Virol 2011; 85:4822–4827 [View Article][PubMed]
    [Google Scholar]
  52. Cotmore SF, Tattersall P. Parvoviruses: small does not mean simple. Annu Rev Virol 2014; 1:517–537 [View Article][PubMed]
    [Google Scholar]
  53. Cotmore SF, Tattersall P. Mutations at the base of the icosahedral five-fold cylinders of minute virus of mice induce 3'-to-5' genome uncoating and critically impair entry functions. J Virol 2012; 86:69–80 [View Article][PubMed]
    [Google Scholar]
  54. Ros C, Baltzer C, Mani B, Kempf C. Parvovirus uncoating in vitro reveals a mechanism of DNA release without capsid disassembly and striking differences in encapsidated DNA stability. Virology 2006; 345:137–147 [View Article][PubMed]
    [Google Scholar]
  55. Cotmore SF, Hafenstein S, Tattersall P. Depletion of virion-associated divalent cations induces parvovirus minute virus of mice to eject its genome in a 3'-to-5' direction from an otherwise intact viral particle. J Virol 2010; 84:1945–1956 [View Article][PubMed]
    [Google Scholar]
  56. Maniatis T, Fritsch EF, Sambrook J. Molecular cloning. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  57. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517 [View Article][PubMed]
    [Google Scholar]
  58. Matz B, Schlehofer JR, Zur Hausen H. Identification of a gene function of herpes simplex virus type 1 essential for amplification of simian virus 40 DNA sequences in transformed hamster cells. Virology 1984; 134:328–337 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001253
Loading
/content/journal/jgv/10.1099/jgv.0.001253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error