1887

Abstract

The release of porcine endogenous retrovirus (PERV) particles from pig cells is a potential risk factor during xenotransplantation by way of productively infecting the human transplant recipient. Potential countermeasures against PERV replication are restriction factors that block retroviral replication. SAMHD1 is a triphosphohydrolase that depletes the cellular pool of dNTPs in non-cycling cells starving retroviral reverse transcription. We investigated the antiviral activity of human SAMHD1 against PERV and found that SAMHD1 potently restricts its reverse transcription in human monocytes, monocyte-derived dendritic cells (MDDC), or macrophages (MDM) and in monocytic THP-1 cells. Degradation of SAMHD1 by SIVmac Vpx or CRISPR/Cas9 knock-out of SAMHD1 allowed for PERV reverse transcription. Addition of deoxynucleosides alleviated the SAMHD1-mediated restriction suggesting that SAMHD1-mediated degradation of dNTPs restricts PERV replication in these human immune cells. In conclusion, our findings highlight SAMHD1 as a potential barrier to PERV transmission from pig transplants to human recipients during xenotransplantation.

Keyword(s): PERV , SAMHD1 and Xenotransplantation
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001232
2019-02-15
2019-08-22
Loading full text...

Full text loading...

References

  1. Cooper DK, Satyananda V, Ekser B, van der Windt DJ, Hara H et al. Progress in pig-to-non-human primate transplantation models (1998-2013): a comprehensive review of the literature. Xenotransplantation 2014;21:397–419 [CrossRef][PubMed]
    [Google Scholar]
  2. Denner J. Recent progress in xenotransplantation, with emphasis on virological safety. Ann Transplant 2016;21:717–727 [CrossRef][PubMed]
    [Google Scholar]
  3. Längin M, Mayr T, Reichart B, Michel S, Buchholz S et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 2018;564:430–433 [CrossRef][PubMed]
    [Google Scholar]
  4. Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012;25:318–343 [CrossRef][PubMed]
    [Google Scholar]
  5. Wilson CA, Wong S, Vanbrocklin M, Federspiel MJ. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol 2000;74:49–56 [CrossRef][PubMed]
    [Google Scholar]
  6. Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C et al. Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 2004;78:13880–13890 [CrossRef][PubMed]
    [Google Scholar]
  7. Harrison I, Takeuchi Y, Bartosch B, Stoye JP. Determinants of high titer in recombinant porcine endogenous retroviruses. J Virol 2004;78:13871–13879 [CrossRef][PubMed]
    [Google Scholar]
  8. Denner J, Specke V, Thiesen U, Karlas A, Kurth R. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 2003;314:125–133 [CrossRef][PubMed]
    [Google Scholar]
  9. Colomer-Lluch M, Gollahon LS, Serra-Moreno R. Anti-HIV Factors: targeting each step of HIV's replication cycle. Curr HIV Res 2016;14:175–182 [CrossRef][PubMed]
    [Google Scholar]
  10. Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 2015;16:546–553 [CrossRef][PubMed]
    [Google Scholar]
  11. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004;427:848–853 [CrossRef][PubMed]
    [Google Scholar]
  12. Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K et al. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 2011;7:e1002425 [CrossRef][PubMed]
    [Google Scholar]
  13. Gramberg T, Kahle T, Bloch N, Wittmann S, Müllers E et al. Restriction of diverse retroviruses by SAMHD1. Retrovirology 2013;10:26 [CrossRef][PubMed]
    [Google Scholar]
  14. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011;474:658–661 [CrossRef][PubMed]
    [Google Scholar]
  15. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011;474:654–657 [CrossRef][PubMed]
    [Google Scholar]
  16. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012;13:621 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim ET, White TE, Brandariz-Núñez A, Diaz-Griffero F, Weitzman MD. SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication. J Virol 2013;87:12949–12956 [CrossRef][PubMed]
    [Google Scholar]
  18. Hollenbaugh JA, Gee P, Baker J, Daly MB, Amie SM et al. Host factor SAMHD1 restricts DNA viruses in non-dividing myeloid cells. PLoS Pathog 2013;9:e1003481 [CrossRef][PubMed]
    [Google Scholar]
  19. Brandariz-Nuñez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M et al. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 2012;9:49 [CrossRef][PubMed]
    [Google Scholar]
  20. Goujon C, Rivière L, Jarrosson-Wuilleme L, Bernaud J, Rigal D et al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 2007;4:2 [CrossRef][PubMed]
    [Google Scholar]
  21. Hofmann H, Logue EC, Bloch N, Daddacha W, Polsky SB et al. The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J Virol 2012;86:12552–12560 [CrossRef][PubMed]
    [Google Scholar]
  22. Schaller T, Pollpeter D, Apolonia L, Goujon C, Malim MH. Nuclear import of SAMHD1 is mediated by a classical karyopherin α/β1 dependent pathway and confers sensitivity to VpxMAC induced ubiquitination and proteasomal degradation. Retrovirology 2014;11:29 [CrossRef][PubMed]
    [Google Scholar]
  23. Schüle S, Kloke BP, Kaiser JK, Heidmeier S, Panitz S et al. Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj. PLoS One 2009;4:e7098 [CrossRef][PubMed]
    [Google Scholar]
  24. Sunseri N, O'Brien M, Bhardwaj N, Landau NR. Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 2011;85:6263–6274 [CrossRef][PubMed]
    [Google Scholar]
  25. Bobadilla S, Sunseri N, Landau NR. Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein. Gene Ther 2013;20:514–520 [CrossRef][PubMed]
    [Google Scholar]
  26. Bittmann I, Mihica D, Plesker R, Denner J. Expression of porcine endogenous retroviruses (PERV) in different organs of a pig. Virology 2012;433:329–336 [CrossRef][PubMed]
    [Google Scholar]
  27. Duvigneau JC, Hartl RT, Groiss S, Gemeiner M. Quantitative simultaneous multiplex real-time PCR for the detection of porcine cytokines. J Immunol Methods 2005;306:16–27 [CrossRef][PubMed]
    [Google Scholar]
  28. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011;480:379–382 [CrossRef][PubMed]
    [Google Scholar]
  29. Herold N, Rudd SG, Ljungblad L, Sanjiv K, Myrberg IH et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med 2017;23:256–263 [CrossRef][PubMed]
    [Google Scholar]
  30. Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 2012;18:1682–1688 [CrossRef][PubMed]
    [Google Scholar]
  31. Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 2012;9:87 [CrossRef][PubMed]
    [Google Scholar]
  32. Dörrschuck E, Fischer N, Bravo IG, Hanschmann KM, Kuiper H et al. Restriction of porcine endogenous retrovirus by porcine APOBEC3 cytidine deaminases. J Virol 2011;85:3842–3857 [CrossRef][PubMed]
    [Google Scholar]
  33. Dörrschuck E, Münk C, Tönjes RR. APOBEC3 proteins and porcine endogenous retroviruses. Transplant Proc 2008;40:959–961 [CrossRef][PubMed]
    [Google Scholar]
  34. Lee J, Choi JY, Lee HJ, Kim KC, Choi BS et al. Repression of porcine endogenous retrovirus infection by human APOBEC3 proteins. Biochem Biophys Res Commun 2011;407:266–270 [CrossRef][PubMed]
    [Google Scholar]
  35. Park SH, Kim JH, Jung YT. Differential sensitivity of porcine endogenous retrovirus to APOBEC3-mediated inhibition. Arch Virol 2015;160:1901–1908 [CrossRef][PubMed]
    [Google Scholar]
  36. Abe M, Fukuma A, Yoshikawa R, Miyazawa T, Yasuda J. Inhibition of budding/release of porcine endogenous retrovirus. Microbiol Immunol 2014;58:432–438 [CrossRef][PubMed]
    [Google Scholar]
  37. Bae EH, Jung YT. Tetherins of various species inhibit the release of porcine endogenous retrovirus from human cells. Acta Virol 2014;58:53–60 [CrossRef][PubMed]
    [Google Scholar]
  38. Mattiuzzo G, Ivol S, Takeuchi Y. Regulation of porcine endogenous retrovirus release by porcine and human tetherins. J Virol 2010;84:2618–2622 [CrossRef][PubMed]
    [Google Scholar]
  39. Wood A, Webb BL, Bartosch B, Schaller T, Takeuchi Y et al. Porcine endogenous retroviruses PERV A and A/C recombinant are insensitive to a range of divergent mammalian TRIM5alpha proteins including human TRIM5alpha. J Gen Virol 2009;90:702–709 [CrossRef][PubMed]
    [Google Scholar]
  40. Yang L, Güell M, Niu D, George H, Lesha E et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 2015;350:1101–1104 [CrossRef][PubMed]
    [Google Scholar]
  41. Semaan M, Ivanusic D, Denner J. Cytotoxic effects during knock out of multiple porcine endogenous retrovirus (PERV) sequences in the pig genome by zinc finger nucleases (ZFN). PLoS One 2015;10:e0122059 [CrossRef][PubMed]
    [Google Scholar]
  42. Niu D, Wei HJ, Lin L, George H, Wang T et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017;357:1303–1307 [CrossRef][PubMed]
    [Google Scholar]
  43. Denner J. Xenotransplantation and Hepatitis E virus. Xenotransplantation 2015;22:167–173 [CrossRef][PubMed]
    [Google Scholar]
  44. Morozov VA, Plotzki E, Rotem A, Barkai U, Denner J. Extended microbiological characterization of Göttingen minipigs: porcine cytomegalovirus and other viruses. Xenotransplantation 2016;23:490–496 [CrossRef][PubMed]
    [Google Scholar]
  45. Fiebig U, Abicht JM, Mayr T, Längin M, Bähr A et al. Distribution of porcine cytomegalovirus in infected donor pigs and in baboon recipients of pig heart transplantation. Viruses 2018;10:66 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001232
Loading
/content/journal/jgv/10.1099/jgv.0.001232
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error