1887

Abstract

Hepatitis C virus (HCV) recruits two molecules of the liver-specific microRNA-122 (miR-122) to two adjacent sites (S1 and S2) located at the 5′ end of the viral RNA genome. This interaction promotes HCV RNA accumulation by stabilising the viral RNA and resulting in alteration of the secondary structure of the viral genome. In addition to S1 and S2, the HCV genome contains several other putative miR-122 binding sites, one in the IRES region, three in the NS5B coding region, and one in the 3′ UTR. We investigated and compared the relative contributions of the S1, S2, IRES, NS5B (NS5B.1, 2 and 3) and 3′ UTR sites on protein expression, viral RNA accumulation, and infectious particle production by mutational analysis and supplementation with compensatory mutant miR-122 molecules. We found that mutations predicted to alter miR-122 binding at the IRES and NS5B.2 sites lead to reductions in HCV core protein expression and viral RNA accumulation; with a concomitant decrease in viral particle production for the NS5B.2 mutant. However, supplementation of miR-122 molecules with compensatory mutations did not rescue these site mutants to wild-type levels, suggesting that mutation of these sequences likely disrupts an additional interaction important to the HCV life cycle, beyond direct interactions with miR-122. Thus, S1 and S2 play a predominant role in viral RNA accumulation, while miR-122 interactions with the IRES, NS5B and 3′ UTR regions have negligible contributions to viral protein expression, viral RNA accumulation, and infectious particle production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001217
2019-01-17
2019-09-18
Loading full text...

Full text loading...

References

  1. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004;14:1902–1910 [CrossRef][PubMed]
    [Google Scholar]
  2. Lee Y, Kim M, Han J, Yeom KH, Lee S et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J 2004;23:4051–4060 [CrossRef][PubMed]
    [Google Scholar]
  3. Lee Y, Ahn C, Han J, Choi H, Kim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415–419 [CrossRef][PubMed]
    [Google Scholar]
  4. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409:363–366 [CrossRef][PubMed]
    [Google Scholar]
  5. Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2001;293:2269–2271 [CrossRef][PubMed]
    [Google Scholar]
  6. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834–838 [CrossRef][PubMed]
    [Google Scholar]
  7. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009;136:642–655 [CrossRef][PubMed]
    [Google Scholar]
  8. Brümmer A, Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. Bioessays 2014;36:617–626 [CrossRef][PubMed]
    [Google Scholar]
  9. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115:787–798 [CrossRef][PubMed]
    [Google Scholar]
  10. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15–20 [CrossRef][PubMed]
    [Google Scholar]
  11. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215–233 [CrossRef][PubMed]
    [Google Scholar]
  12. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007;27:91–105 [CrossRef][PubMed]
    [Google Scholar]
  13. Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 2010;38:789–802 [CrossRef][PubMed]
    [Google Scholar]
  14. Niepmann M. Hepatitis C virus RNA translation. Curr Top Microbiol Immunol 2013;369:143–166 [CrossRef][PubMed]
    [Google Scholar]
  15. Jopling CL, Schütz S, Sarnow P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 2008;4:77–85 [CrossRef][PubMed]
    [Google Scholar]
  16. Chang J, Nicolas E, Marks D, Sander C, Lerro A et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004;1:106–113 [CrossRef][PubMed]
    [Google Scholar]
  17. Kambara H, Fukuhara T, Shiokawa M, Ono C, Ohara Y et al. Establishment of a novel permissive cell line for the propagation of hepatitis C virus by expression of microRNA miR122. J Virol 2012;86:1382–1393 [CrossRef][PubMed]
    [Google Scholar]
  18. Chang J, Guo JT, Jiang D, Guo H, Taylor JM et al. Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol 2008;82:8215–8223 [CrossRef][PubMed]
    [Google Scholar]
  19. Vogt A, Scull MA, Friling T, Horwitz JA, Donovan BM et al. Recapitulation of the hepatitis C virus life-cycle in engineered murine cell lines. Virology 2013;444:1–11 [CrossRef][PubMed]
    [Google Scholar]
  20. da Costa D, Turek M, Felmlee DJ, Girardi E, Pfeffer S et al. Reconstitution of the entire hepatitis C virus life cycle in nonhepatic cells. J Virol 2012;86:11919–11925 [CrossRef][PubMed]
    [Google Scholar]
  21. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005;309:1577–1581 [CrossRef][PubMed]
    [Google Scholar]
  22. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327:198–2010 [CrossRef][PubMed]
    [Google Scholar]
  23. Bernier A, Sagan S. The diverse roles of microRNAs at the Host–Virus Interface. Viruses 2018;10:440 [CrossRef]
    [Google Scholar]
  24. Amador-Cañizares Y, Bernier A, Wilson JA, Sagan SM. miR-122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5' end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Res 2018;46:5139–5158 [CrossRef][PubMed]
    [Google Scholar]
  25. Thibault PA, Huys A, Amador-Cañizares Y, Gailius JE, Pinel DE et al. Regulation of hepatitis C Virus Genome Replication by Xrn1 and MicroRNA-122 Binding to Individual Sites in the 5' Untranslated Region. J Virol 2015;89:6294–6311 [CrossRef][PubMed]
    [Google Scholar]
  26. Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM. Competing and noncompeting activities of miR-122 and the 5' exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci USA 2013;110:1881–1886 [CrossRef][PubMed]
    [Google Scholar]
  27. Kincaid RP, Lam VL, Chirayil RP, Randall G, Sullivan CS. RNA triphosphatase DUSP11 enables exonuclease XRN-mediated restriction of hepatitis C virus. Proc Natl Acad Sci USA 2018;115:8197–8202 [CrossRef][PubMed]
    [Google Scholar]
  28. Schult P, Roth H, Adams RL, Mas C, Imbert L et al. microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat Commun 2018;9:2613 [CrossRef][PubMed]
    [Google Scholar]
  29. Gerresheim GK, Dünnes N, Nieder-Röhrmann A, Shalamova LA, Fricke M et al. microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3' untranslated region: function in replication and influence of RNA secondary structure. Cell Mol Life Sci 2017;74:747–760 [CrossRef][PubMed]
    [Google Scholar]
  30. Nasheri N, Singaravelu R, Goodmurphy M, Lyn RK, Pezacki JP. Competing roles of microRNA-122 recognition elements in hepatitis C virus RNA. Virology 2011;410:336–344 [CrossRef][PubMed]
    [Google Scholar]
  31. Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG et al. microRNA-122 stimulates translation of hepatitis C virus RNA. Embo J 2008;27:3300–3310 [CrossRef][PubMed]
    [Google Scholar]
  32. Luna JM, Scheel TK, Danino T, Shaw KS, Mele A et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 2015;160:1099–1110 [CrossRef][PubMed]
    [Google Scholar]
  33. Fricke M, Dünnes N, Zayas M, Bartenschlager R, Niepmann M et al. Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA 2015;21:1219–1232 [CrossRef]
    [Google Scholar]
  34. Markham NR, Zuker M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 2008;453:3–31 [CrossRef][PubMed]
    [Google Scholar]
  35. Russell RS, Meunier JC, Takikawa S, Faulk K, Engle RE et al. Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus. Proc Natl Acad Sci USA 2008;105:4370–4375 [CrossRef][PubMed]
    [Google Scholar]
  36. Diviney S, Tuplin A, Struthers M, Armstrong V, Elliott RM et al. A hepatitis C virus cis-acting replication element forms a long-range RNA-RNA interaction with upstream RNA sequences in NS5B. J Virol 2008;82:9008–9022 [CrossRef][PubMed]
    [Google Scholar]
  37. Chu D, Ren S, Hu S, Wang WG, Subramanian A et al. Systematic analysis of enhancer and critical cis-acting RNA elements in the protein-encoding region of the hepatitis C virus genome. J Virol 2013;87:5678–5696 [CrossRef][PubMed]
    [Google Scholar]
  38. Pirakitikulr N, Kohlway A, Lindenbach BD, Pyle AM. The Coding region of the HCV genome contains a network of regulatory RNA structures. Mol Cell 2016;62:111–120 [CrossRef][PubMed]
    [Google Scholar]
  39. Thibault PA, Huys A, Dhillon P, Wilson JA. MicroRNA-122-dependent and -independent replication of Hepatitis C Virus in Hep3B human hepatoma cells. Virology 2013;436:179–190 [CrossRef][PubMed]
    [Google Scholar]
  40. Machlin ES, Sarnow P, Sagan SM. Masking the 5' terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA 2011;108:3193–3198 [CrossRef][PubMed]
    [Google Scholar]
  41. Berry KE, Waghray S, Doudna JA. The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit. RNA 2010;16:1559–1569 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang C, Le SY, Ali N, Siddiqui A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5' noncoding region. RNA 1995;1:526–537[PubMed]
    [Google Scholar]
  43. Berry KE, Waghray S, Mortimer SA, Bai Y, Doudna JA. Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning. Structure 2011;19:1456–1466 [CrossRef][PubMed]
    [Google Scholar]
  44. Weinlich S, Hüttelmaier S, Schierhorn A, Behrens SE, Ostareck-Lederer A et al. IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3'UTR. RNA 2009;15:1528–1542 [CrossRef][PubMed]
    [Google Scholar]
  45. Nielsen J, Kristensen MA, Willemoës M, Nielsen FC, Christiansen J. Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability. Nucleic Acids Res 2004;32:4368–4376 [CrossRef][PubMed]
    [Google Scholar]
  46. Pudi R, Abhiman S, Srinivasan N, Das S. Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by specific interaction of independent regions of human La autoantigen. J Biol Chem 2003;278:12231–12240 [CrossRef][PubMed]
    [Google Scholar]
  47. Kumar A, Ray U, Das S. Human La protein interaction with GCAC near the initiator AUG enhances hepatitis C Virus RNA replication by promoting linkage between 5' and 3' untranslated regions. J Virol 2013;87:6713–6726 [CrossRef][PubMed]
    [Google Scholar]
  48. Ray U, Das S. Interplay between NS3 protease and human La protein regulates translation-replication switch of Hepatitis C virus. Sci Rep 2011;1:1 [CrossRef][PubMed]
    [Google Scholar]
  49. Filbin ME, Kieft JS. HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove. RNA 2011;17:1258–1273 [CrossRef][PubMed]
    [Google Scholar]
  50. Locker N, Easton LE, Lukavsky PJ. HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. EMBO J 2007;26:795–805 [CrossRef][PubMed]
    [Google Scholar]
  51. Gokhale NS, McIntyre ABR, McFadden MJ, Roder AE, Kennedy EM et al. N6-Methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 2016;20:654–665 [CrossRef][PubMed]
    [Google Scholar]
  52. Schult P. PhD Thesis 2016; Heidelberg, Germany: University of Heidelberg;
    [Google Scholar]
  53. Tuplin A, Struthers M, Simmonds P, Evans DJ. A twist in the tail: SHAPE mapping of long-range interactions and structural rearrangements of RNA elements involved in HCV replication. Nucleic Acids Res 2012;40:6908–6921 [CrossRef][PubMed]
    [Google Scholar]
  54. Sagan SM, Chahal J, Sarnow P. cis-Acting RNA elements in the hepatitis C virus RNA genome. Virus Res 2015;206:90–98 [CrossRef][PubMed]
    [Google Scholar]
  55. Wang X, Lu Z, Gomez A, Hon GC, Yue Y et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117–120 [CrossRef][PubMed]
    [Google Scholar]
  56. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015;161:1388–1399 [CrossRef][PubMed]
    [Google Scholar]
  57. Song Y, Friebe P, Tzima E, Jünemann C, Bartenschlager R et al. The hepatitis C virus RNA 3'-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol 2006;80:11579–11588 [CrossRef][PubMed]
    [Google Scholar]
  58. Stewart H, Bingham RJ, White SJ, Dykeman EC, Zothner C et al. Identification of novel RNA secondary structures within the hepatitis C virus genome reveals a cooperative involvement in genome packaging. Sci Rep 2016;6:22952 [CrossRef][PubMed]
    [Google Scholar]
  59. Shi G, Suzuki T. Molecular basis of encapsidation of hepatitis C virus genome. Front Microbiol 2018;9:396 [CrossRef][PubMed]
    [Google Scholar]
  60. Shi G, Ando T, Suzuki R, Matsuda M, Nakashima K et al. Involvement of the 3' untranslated region in encapsidation of the hepatitis C virus. PLoS Pathog 2016;12:e1005441 [CrossRef][PubMed]
    [Google Scholar]
  61. Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 2002;76:13001–13014 [CrossRef][PubMed]
    [Google Scholar]
  62. Wilson JA, Zhang C, Huys A, Richardson CD. Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation. J Virol 2011;85:2342–2350 [CrossRef][PubMed]
    [Google Scholar]
  63. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T et al. Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 2005;102:9294–9299 [CrossRef][PubMed]
    [Google Scholar]
  64. Ranjith-Kumar CT, Gajewski J, Gutshall L, Maley D, Sarisky RT et al. Terminal nucleotidyl transferase activity of recombinant Flaviviridae RNA-dependent RNA polymerases: implication for viral RNA synthesis. J Virol 2001;75:8615–8623 [CrossRef][PubMed]
    [Google Scholar]
  65. Lohmann V, Körner F, Dobierzewska A, Bartenschlager R. Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 2001;75:1437–1449 [CrossRef][PubMed]
    [Google Scholar]
  66. Markham NR, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 2005;33:W577–W581 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001217
Loading
/content/journal/jgv/10.1099/jgv.0.001217
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error