1887

Abstract

Twelve complete genome sequences of Phthorimaea operculella granulovirus (PhopGV) isolates from four different continents (Africa, South America, Asia and Europe) were analysed after Illumina next-generation sequencing (NGS). The isolates have a circular double-stranded DNA genome that is 118 355 to 119 177 bp in length and all of them encode 130 open reading frames (ORFs). Analysis of single-nucleotide polymorphisms (SNPs) revealed a unique set of SNP positions for every tested isolate. The genome sequences of the investigated PhopGV isolates were classified into a new system of four (1–4) groups according to the presence of group-specific SNPs as well as insertions and deletions. These genome groups correlated with phylogenetic lineages inferred from minimum-evolution trees of the whole-genome consensus nucleotide sequences. All members of group 3 originated from the Mediterranean area, whereas the geographical origin and the group assignment did not correlate for isolates belonging to genome groups 1, 2 or 4. The high degree of coverage facilitated the determination of variant nucleotide frequencies. We conclude that the geographical isolates of PhopGV are genetically highly similar. On the other hand, they were rarely genetically homogenous and in most cases appeared to be mixtures of multiple genotypes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001215
2019-02-22
2019-09-23
Loading full text...

Full text loading...

References

  1. Jukes MD, Motsoeneng BM, Knox CM, Hill MP, Moore SD. The comparative analysis of complete genome sequences from two South African betabaculoviruses: Phthorimaea operculella granulovirus and Plutella xylostella granulovirus. Arch Virol 2016;161:2917–2920 [CrossRef][PubMed]
    [Google Scholar]
  2. Croizier L, Taha A, Croizier G, Lopez Ferber M. Determination of the complete genome sequence of the potato tuber moth, Phthorimaea operculella granulovirus. Memorias II Taller Int de la Polilla Guatemalteca 2004;1:101–108
    [Google Scholar]
  3. Reed EM. A granulosis virus of potato moth. Aust J Sci 1969;31:300–301
    [Google Scholar]
  4. Espinel-Correal C, Léry X, Villamizar L, Gómez J, Zeddam JL et al. Genetic and biological analysis of Colombian Phthorimaea operculella granulovirus isolated from Tecia solanivora (Lepidoptera: Gelechiidae). Appl Environ Microbiol 2010;76:7617–7625 [CrossRef][PubMed]
    [Google Scholar]
  5. Zeddam JL, Pollet A, Mangoendiharjo S, Ramadhan TH, Ferber ML. Occurrence and virulence of a granulosis virus in Phthorimaea operculella (Lep., Gelechidae) populations in Indonesia. J Invertebr Pathol 1999;74:48–54 [CrossRef][PubMed]
    [Google Scholar]
  6. Kroschel J, Koch W. Studies on the use of chemicals, botanicals and Bacillus thuringiensis in the management of the potato tuber moth in potato stores. Crop Prot 1996;15:197–203 [CrossRef]
    [Google Scholar]
  7. Hunter DK, Hoffmann DF, Collier SJ. Observations on a granulosis virus of the potato tuberworm, Phthorimaea operculella. J Invertebr Pathol 1975;26:397–400 [CrossRef]
    [Google Scholar]
  8. Lacey LA, Kroschel J. Microbial control of the potato tuber moth (Lepidoptera: Gelechiidae). Fruit, Vegetable and Cereal Science and Biotechnology 3 (Special Issue) 2009;1:46–54 Global Science Books
    [Google Scholar]
  9. Carpio C, Dangles O, Dupas S, Léry X, López-Ferber M et al. Development of a viral biopesticide for the control of the Guatemala potato tuber moth Tecia solanivora. J Invertebr Pathol 2013;112:184–191 [CrossRef][PubMed]
    [Google Scholar]
  10. Povolny D. Genitalia of some nearctic and neotropic members of the tribe Gnorimoschemini (Lepidoptera, Gelechiidae). Econ Entomol 1967;95:1190–1194
    [Google Scholar]
  11. Reed EN. Factors affecting the status of a virus as a control agent of the potato tuber moth (Phthorimaea operculella (Zell.)) (Lep., Gelichiidae)). Bull Entomol Res 1971;61:223–233
    [Google Scholar]
  12. Haase S, Sciocco-Cap A, Romanowski V. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses 2015;7:2230–2267 [CrossRef][PubMed]
    [Google Scholar]
  13. Kroschel J, Fritsch E, Huber J. Biological control of the potato tuber moth (Phthorimaea operculella Zeller) in the republic of Yemen using granulosis virus: biochemical characterization, pathogenicity and stability of the virus. Biocontrol Sci Techn 1996;6:207–216 [CrossRef]
    [Google Scholar]
  14. Gómez Valderrama JA, Barrera G, López-Ferber M, Belaich M, Ghiringhelli PD et al. Potential of betabaculoviruses to control the tomato leafminer Tuta absoluta (Meyrick). J Appl Entomol 2017;1–11
    [Google Scholar]
  15. Lacey LA, Hoffmann DF, Federici BA. Histopathology and effect on development of the PhopGV on larvae of the potato tubermoth, Phthorimaea operculella (Lepidoptera: Gelechiidae). J Invertebr Pathol 2011;108:52–55 [CrossRef][PubMed]
    [Google Scholar]
  16. Hilton S. Baculoviruses: molecular biology of granuloviruses. In Mahy BWJ, van Regenmortel Marc HV. (editors) Encyclopedia of Virology, 3rd ed. Academic Press; 2008
    [Google Scholar]
  17. Federici BA. Baculovirus pathogenesis. In Miller LK. (editor) The Baculoviruses New York, NY: Plenum Press; 1997; pp.33–59
    [Google Scholar]
  18. Takahashi M, Nakai M, Saito Y, Sato Y, Ishijima C et al. Field efficacy and transmission of fast- and slow-killing nucleopolyhedroviruses that are infectious to Adoxophyes honmai (Lepidoptera: Tortricidae). Viruses 2015;7:1271–1283 [CrossRef][PubMed]
    [Google Scholar]
  19. Zeddam JL, Léry X, Gómez-Bonilla Y, Espinel-Correal C, Páez D et al. Responses of different geographic populations of two potato tuber moth species to genetic variants of Phthorimaea operculella granulovirus. Entomol Exp Appl 2013;149:138–147
    [Google Scholar]
  20. Gómez-Bonilla Y, López-Ferber M, Caballero P, Léry X, Muñoz D. Costa Rican soils contain highly insecticidal granulovirus strains against Phthorimaea operculella and Tecia solanivora. J Applied Entomol 2012;136:530–538 [CrossRef]
    [Google Scholar]
  21. Vickers JM, Cory JS, Entwistle PF. DNA characterization of eight geographic isolates of granulosis virus from the potato tuber moth (Phthorimaea operculella) (lepidoptera, gelechiidae). J Invertebr Pathol 1991;57:334–342 [CrossRef]
    [Google Scholar]
  22. Jukes MD, Knox CM, Hill MP, Moore SD. The isolation and genetic characterisation of a South African strain of Phthorimaea operculella granulovirus, PhopGV-SA. Virus Res 2014;183:85–88 [CrossRef][PubMed]
    [Google Scholar]
  23. Larem A, Ben-Tiba S, Wennmann JT, Jehle JA. Effects of a covert infection with an Phthorimaea operculella granulovirus in insect populations of Phthorimaea operculella. 2018; submitted
  24. Wennmann JT, Keilwagen J, Jehle JA. Baculovirus Kimura two-parameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. J Gen Virol 2018;99:1307–1320 [CrossRef][PubMed]
    [Google Scholar]
  25. Jehle JA, Lange M, Wang H, Hu Z, Wang Y et al. Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 2006;346:180–193 [CrossRef][PubMed]
    [Google Scholar]
  26. Rezapanah M, Shojai-Estabragh S, Huber J, Jehle JA. Molecular and biological characterization of new isolates of Cydia pomonella granulovirus from Iran. J Pest Sci 2008;81:187–191 [CrossRef]
    [Google Scholar]
  27. Simón O, Williams T, López-Ferber M, Caballero P. Genetic structure of a Spodoptera frugiperda nucleopolyhedrovirus population: high prevalence of deletion genotypes. Appl Environ Microbiol 2004;70:5579–5588 [CrossRef][PubMed]
    [Google Scholar]
  28. Léry X, Abol-Ela S, Giannotti J. Genetic heterogeneity of Phthorimaea operculella granulovirus: restriction analysis of wild-type isolates and clones obtained in vitro. Acta Virol 1998;42:13–21[PubMed]
    [Google Scholar]
  29. Smith IR, Crook NE. In vivo isolation of baculovirus genotypes. Virology 1988;166:240–244 [CrossRef][PubMed]
    [Google Scholar]
  30. Lee HH, Miller LK. Isolation of genotypic variants of Autographa californica nuclear polyhedrosis virus. J Virol 1978;27:754–767[PubMed]
    [Google Scholar]
  31. Gueli Alletti G, Sauer AJ, Weihrauch B, Fritsch E, Undorf-Spahn K et al. Using next generation sequencing to identify and quantify the genetic composition of resistance-breaking commercial isolates of Cydia pomonella granulovirus. Viruses 2017;9:250 [CrossRef][PubMed]
    [Google Scholar]
  32. Wennmann JT, Radtke P, Eberle KE, Gueli Alletti G, Jehle JA. Deciphering single nucleotide polymorphisms and evolutionary trends in isolates of the Cydia pomonella granulovirus. Viruses 2017;9:227 [CrossRef][PubMed]
    [Google Scholar]
  33. Wennmann JT, Jehle JA. Detection and quantitation of Agrotis baculoviruses in mixed infections. J Virol Methods 2014;197:39–46 [CrossRef][PubMed]
    [Google Scholar]
  34. Watson SJ, Welkers MR, Depledge DP, Coulter E, Breuer JM et al. Viral population analysis and minority-variant detection using short read next-generation sequencing. Philos Trans R Soc Lond B Biol Sci 2013;368:20120205 [CrossRef][PubMed]
    [Google Scholar]
  35. Eberle KE, Sayed S, Rezapanah M, Shojai-Estabragh S, Jehle JA. Diversity and evolution of the Cydia pomonella granulovirus. J Gen Virol 2009;90:662–671 [CrossRef][PubMed]
    [Google Scholar]
  36. Erlandson MA. Genetic variation in field populations of baculoviruses: Mechanisms for generating variation and its potential role in baculovirus epizootiology. Virol Sin 2009;24:458–469 [CrossRef]
    [Google Scholar]
  37. Ebert D, Hamilton WD. Sex against virulence: the coevolution of parasitic diseases. Trends Ecol Evol 1996;11:79–82 [CrossRef][PubMed]
    [Google Scholar]
  38. Simón O, Williams T, Caballero P, López-Ferber M. Dynamics of deletion genotypes in an experimental insect virus population. Proc R Soc Lond 2005;273:789–790
    [Google Scholar]
  39. Lopez-Ferber M, Simon O, Williams T, Caballero P. Defective or effective? Mutualistic interactions between virus genotypes. Proc R Soc Lond 2003;270:2249–2255 [CrossRef]
    [Google Scholar]
  40. Chen X, Zhang WJ, Wong J, Chun G, Lu A et al. Comparative analysis of the complete genome sequences of Helicoverpa zea and Helicoverpa armigera single-nucleocapsid nucleopolyhedroviruses. J Gen Virol 2002;83:673–684 [CrossRef][PubMed]
    [Google Scholar]
  41. Tomalski MD, Eldridge R, Miller LK. A baculovirus homolog of a Cu/Zn superoxide dismutase gene. Virology 1991;184:149–161[PubMed]
    [Google Scholar]
  42. Katsuma S, Bando H, Shimada T. Deletion analysis of a superoxide dismutase gene of Bombyx mori (Lepidoptera: Bombycidae) nucleopolyhedrovirus. Appl Entomol Zool 2015;50:57–62 [CrossRef]
    [Google Scholar]
  43. Rohrmann G. The AcMNPV genome: Gene content, conservation and function. Baculovirus Molecular Biology Bethesda, MD: NCBI, National Library of Medicine (US); 2011
    [Google Scholar]
  44. Miller LK. The Baculoviruses. Springer Science + Business Media New York: 1997
    [Google Scholar]
  45. Kroschel J. Integrated Pest Management in Potato Production in the Republic of Yemen with Special Reference to the Integrated Biological Control of the Potato Tuber Moth (Phthorimaea operculella Zeller), Tropical Agriculture)vol. 8 Margraf Verlag, Germany: Weikersheim; 1995
    [Google Scholar]
  46. Briese DT. The incidence of parasitism and disease in field populations of the potato moth Phthorimaea operculella (Zeller) in Australia. J Aust Entomol Soc 1981;20:319–326 [CrossRef]
    [Google Scholar]
  47. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  48. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004;14:1394–1403 [CrossRef][PubMed]
    [Google Scholar]
  49. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  50. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  51. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  52. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  53. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  54. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001215
Loading
/content/journal/jgv/10.1099/jgv.0.001215
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error