1887

Abstract

Proteasome inhibitors (PIs) have been identified as an emerging class of HIV-1 latency-reversing agents (LRAs). These inhibitors can reactivate latent HIV-1 to produce non-infectious viruses. The mechanism underlying reduced infectivity of reactivated viruses is unknown. In this study, we analysed PI-reactivated viruses using biochemical and virological assays and demonstrated that these PIs stabilized the cellular expression of HIV-1 restriction factor, APOBEC3G, facilitating its packaging in the released viruses. Using infectivity assay and immunoblotting, we observed that the reduction in viral infectivity was due to enhanced levels of functionally active APOBEC3 proteins packaged in the virions. Sequencing of the proviral genome in the target cells revealed the presence of APOBEC3 signature hypermutations. Our study strengthens the role of PIs as bifunctional LRAs and demonstrates that the loss of infectivity of reactivated HIV-1 virions may be due to the increased packaging of APOBEC3 proteins in the virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001205
2019-02-19
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/100/3/523.html?itemId=/content/journal/jgv/10.1099/jgv.0.001205&mimeType=html&fmt=ahah

References

  1. Chun TW, Moir S, Fauci AS. HIV reservoirs as obstacles and opportunities for an HIV cure. Nat Immunol 2015; 16:584–589 [View Article][PubMed]
    [Google Scholar]
  2. Diamond C, Taylor TH, Anton-Culver H. Quality of life, characteristics and survival of patients with HIV and lymphoma. Qual Life Res 2010; 19:149–155 [View Article][PubMed]
    [Google Scholar]
  3. Sahu GK. Potential implication of residual viremia in patients on effective antiretroviral therapy. AIDS Res Hum Retroviruses 2015; 31:25–35 [View Article][PubMed]
    [Google Scholar]
  4. Alexaki A, Liu Y, Wigdahl B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 2008; 6:388–400 [View Article][PubMed]
    [Google Scholar]
  5. Antinori A, Perno CF, Giancola ML, Forbici F, Ippolito G et al. Efficacy of cerebrospinal fluid (CSF)-penetrating antiretroviral drugs against HIV in the neurological compartment: different patterns of phenotypic resistance in CSF and plasma. Clin Infect Dis 2005; 41:1787–1793 [View Article][PubMed]
    [Google Scholar]
  6. Ene L, Duiculescu D, Ruta SM. How much do antiretroviral drugs penetrate into the central nervous system?. J Med Life 2011; 4:432–439[PubMed]
    [Google Scholar]
  7. Lee GQ, Lichterfeld M. Diversity of HIV-1 reservoirs in CD4+ T-cell subpopulations. Curr Opin HIV AIDS 2016; 11:383–387 [View Article][PubMed]
    [Google Scholar]
  8. Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. J Immunol 2016; 197:407–417 [View Article][PubMed]
    [Google Scholar]
  9. Archin NM, Margolis DM. Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis 2014; 27:29–35 [View Article][PubMed]
    [Google Scholar]
  10. Kim Y, Anderson JL, Lewin SR. Getting the "Kill" into "Shock and Kill": Strategies to Eliminate Latent HIV. Cell Host Microbe 2018; 23:14–26 [View Article][PubMed]
    [Google Scholar]
  11. Biancotto A, Grivel JC, Gondois-Rey F, Bettendroffer L, Vigne R et al. Dual role of prostratin in inhibition of infection and reactivation of human immunodeficiency virus from latency in primary blood lymphocytes and lymphoid tissue. J Virol 2004; 78:10507–10515 [View Article][PubMed]
    [Google Scholar]
  12. Doyon G, Zerbato J, Mellors JW, Sluis-Cremer N. Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS 2013; 27:F7–F11 [View Article][PubMed]
    [Google Scholar]
  13. Huber K, Doyon G, Plaks J, Fyne E, Mellors JW et al. Inhibitors of histone deacetylases: correlation between isoform specificity and reactivation of HIV type 1 (HIV-1) from latently infected cells. J Biol Chem 2011; 286:jbc.M110.180224 [View Article][PubMed]
    [Google Scholar]
  14. Ishida T, Hamano A, Koiwa T, Watanabe T. 5' long terminal repeat (LTR)-selective methylation of latently infected HIV-1 provirus that is demethylated by reactivation signals. Retrovirology 2006; 3:69 [View Article][PubMed]
    [Google Scholar]
  15. Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H et al. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One 2010; 5:e11160 [View Article][PubMed]
    [Google Scholar]
  16. Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 2014; 12:750–764 [View Article][PubMed]
    [Google Scholar]
  17. Gutiérrez C, Serrano-Villar S, Madrid-Elena N, Pérez-Elías MJ, Martín ME et al. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS 2016; 30:1385–1392 [View Article][PubMed]
    [Google Scholar]
  18. Rasmussen TA, Lewin SR. Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents?. Curr Opin HIV AIDS 2016; 11:394–401 [View Article][PubMed]
    [Google Scholar]
  19. Winckelmann A, Barton K, Hiener B, Schlub TE, Shao W et al. Romidepsin-induced HIV-1 viremia during effective antiretroviral therapy contains identical viral sequences with few deleterious mutations. AIDS 2017; 31:771–779 [View Article][PubMed]
    [Google Scholar]
  20. Jones RB, O'Connor R, Mueller S, Foley M, Szeto GL et al. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes. PLoS Pathog 2014; 10:e1004287 [View Article][PubMed]
    [Google Scholar]
  21. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 2012; 36:491–501 [View Article][PubMed]
    [Google Scholar]
  22. Tsai P, Wu G, Baker CE, Thayer WO, Spagnuolo RA et al. In vivo analysis of the effect of panobinostat on cell-associated HIV RNA and DNA levels and latent HIV infection. Retrovirology 2016; 13:36 [View Article][PubMed]
    [Google Scholar]
  23. Chopera DR, Wright JK, Brockman MA, Brumme ZL. Immune-mediated attenuation of HIV-1. Future Virol 2011; 6:917–928 [View Article][PubMed]
    [Google Scholar]
  24. Liu Y, Mcnevin J, Zhao H, Tebit DM, Troyer RM et al. Evolution of human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitopes: fitness-balanced escape. J Virol 2007; 81:12179–12188 [View Article][PubMed]
    [Google Scholar]
  25. Marsden MD, Zack JA. Double trouble: HIV latency and CTL escape. Cell Host Microbe 2015; 17:141–142 [View Article][PubMed]
    [Google Scholar]
  26. Trautmann L, Mbitikon-Kobo FM, Goulet JP, Peretz Y, Shi Y et al. Profound metabolic, functional, and cytolytic differences characterize HIV-specific CD8 T cells in primary and chronic HIV infection. Blood 2012; 120:3466–3477 [View Article][PubMed]
    [Google Scholar]
  27. Kubiczkova L, Pour L, Sedlarikova L, Hajek R, Sevcikova S. Proteasome inhibitors - molecular basis and current perspectives in multiple myeloma. J Cell Mol Med 2014; 18:947–961 [View Article][PubMed]
    [Google Scholar]
  28. Miller LK, Kobayashi Y, Chen CC, Russnak TA, Ron Y et al. Proteasome inhibitors act as bifunctional antagonists of human immunodeficiency virus type 1 latency and replication. Retrovirology 2013; 10:120 [View Article][PubMed]
    [Google Scholar]
  29. Pan XY, Zhao W, Wang CY, Lin J, Zeng XY et al. Heat shock protein 90 facilitates latent HIV reactivation through maintaining the function of positive transcriptional elongation factor b (p-TEFb) under proteasome inhibition. J Biol Chem 2016; 291:26177–26187 [View Article][PubMed]
    [Google Scholar]
  30. Anderson JL, Hope TJ. APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells. Virology 2008; 375:1–12 [View Article][PubMed]
    [Google Scholar]
  31. Desimmie BA, Delviks-Frankenberrry KA, Burdick RC, Qi D, Izumi T et al. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J Mol Biol 2014; 426:1220–1245 [View Article][PubMed]
    [Google Scholar]
  32. He Z, Zhang W, Chen G, Xu R, Yu XF. Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. J Mol Biol 2008; 381:1000–1011 [View Article][PubMed]
    [Google Scholar]
  33. Hultquist JF, Lengyel JA, Refsland EW, Larue RS, Lackey L et al. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 2011; 85:11220–11234 [View Article][PubMed]
    [Google Scholar]
  34. Mehle A, Strack B, Ancuta P, Zhang C, Mcpike M et al. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 2004; 279:7792–7798 [View Article][PubMed]
    [Google Scholar]
  35. Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 2003; 9:1404–1407 [View Article][PubMed]
    [Google Scholar]
  36. Wissing S, Galloway NL, Greene WC. HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors. Mol Aspects Med 2010; 31:383–397 [View Article][PubMed]
    [Google Scholar]
  37. Conticello SG, Harris RS, Neuberger MS. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol 2003; 13:2009–2013 [View Article][PubMed]
    [Google Scholar]
  38. Stopak K, de Noronha C, Yonemoto W, Greene WC. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 2003; 12:591–601 [View Article][PubMed]
    [Google Scholar]
  39. Yu X, Yu Y, Liu B, Luo K, Kong W et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 2003; 302:1056–1060 [View Article][PubMed]
    [Google Scholar]
  40. Han YH, Moon HJ, You BR, Park WH. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep 2009; 22:215–221[PubMed]
    [Google Scholar]
  41. Butera ST, Perez VL, Wu BY, Nabel GJ, Folks TM. Oscillation of the human immunodeficiency virus surface receptor is regulated by the state of viral activation in a CD4+ cell model of chronic infection. J Virol 1991; 65:4645–4653[PubMed]
    [Google Scholar]
  42. Miyagi E, Schwartzkopff F, Plishka R, Buckler-White A, Clouse KA et al. APOBEC3G-independent reduction in virion infectivity during long-term HIV-1 replication in terminally differentiated macrophages. Virology 2008; 379:266–274 [View Article][PubMed]
    [Google Scholar]
  43. Wei X, Decker JM, Liu H, Zhang Z, Arani RB et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002; 46:1896–1905 [View Article][PubMed]
    [Google Scholar]
  44. Goila-Gaur R, Strebel K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 2008; 5:51 [View Article][PubMed]
    [Google Scholar]
  45. Larue RS, Andrésdóttir V, Blanchard Y, Conticello SG, Derse D et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J Virol 2009; 83:494–497 [View Article][PubMed]
    [Google Scholar]
  46. Stavrou S, Ross SR. APOBEC3 Proteins in Viral Immunity. J Immunol 2015; 195:4565–4570 [View Article][PubMed]
    [Google Scholar]
  47. Bishop KN, Verma M, Kim EY, Wolinsky SM, Malim MH. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 2008; 4:e1000231 [View Article][PubMed]
    [Google Scholar]
  48. Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W et al. Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 2007; 35:7096–7108 [View Article][PubMed]
    [Google Scholar]
  49. Mbisa JL, Barr R, Thomas JA, Vandegraaff N, Dorweiler IJ et al. Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 2007; 81:7099–7110 [View Article][PubMed]
    [Google Scholar]
  50. Newman EN, Holmes RK, Craig HM, Klein KC, Lingappa JR et al. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 2005; 15:166–170 [View Article][PubMed]
    [Google Scholar]
  51. Desimmie BA, Burdick RC, Izumi T, Doi H, Shao W et al. APOBEC3 proteins can copackage and comutate HIV-1 genomes. Nucleic Acids Res 2016; 44:7848–7865 [View Article][PubMed]
    [Google Scholar]
  52. Armitage AE, Deforche K, Chang CH, Wee E, Kramer B et al. APOBEC3G-induced hypermutation of human immunodeficiency virus type-1 is typically a discrete "all or nothing" phenomenon. PLoS Genet 2012; 8:e1002550 [View Article][PubMed]
    [Google Scholar]
  53. Kijak GH, Janini LM, Tovanabutra S, Sanders-Buell E, Arroyo MA et al. Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells. Virology 2008; 376:101–111 [View Article][PubMed]
    [Google Scholar]
  54. Suspène R, Rusniok C, Vartanian JP, Wain-Hobson S. Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res 2006; 34:4677–4684 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.001205
Loading
/content/journal/jgv/10.1099/jgv.0.001205
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error