1887

Abstract

West Nile Virus, Usutu virus, Bagaza virus, Israel turkey encephalitis virus and Tembusu virus currently constitute the five flaviviruses transmitted by mosquito bites with a marked pathogenicity for birds. They have been identified as the causative agents of severe neurological symptoms, drop in egg production and/or mortalities among avian hosts. They have also recently shown an expansion of their geographic distribution and/or a rise in cases of human infection. This paper is the first up-to-date review of the pathology of these flaviviruses in birds, with a special emphasis on the difference in susceptibility among avian species, in order to understand the specificity of the host spectrum of each of these viruses. Furthermore, given the lack of a clear prophylactic approach against these viruses in birds, a meta-analysis of vaccination trials conducted to date on these animals is given to constitute a solid platform from which designing future studies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001203
2019-01-22
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/100/2/119.html?itemId=/content/journal/jgv/10.1099/jgv.0.001203&mimeType=html&fmt=ahah

References

  1. Lindenbach BD, Murray CL, Thiel H-J, Rice CM. Flaviviridae. In Knipe DM, Howley PM. (editors) Fields Virology Philadelphia: LippincottWilliams &Wilkins; 2013 pp. 712–746
    [Google Scholar]
  2. O'Guinn ML, Turell MJ, Kengluecha A, Jaichapor B, Kankaew P et al. Field detection of Tembusu virus in Western Thailand by rt-PCR and vector competence determination of select culex mosquitoes for transmission of the virus. Am J Trop Med Hyg 2013; 89:1023–1028 [View Article][PubMed]
    [Google Scholar]
  3. Nikolay B, Diallo M, Boye CS, Sall AA. Usutu virus in Africa. Vector Borne Zoonotic Dis 2011; 11:1417–1423 [View Article][PubMed]
    [Google Scholar]
  4. Sudeep AB, Bondre VP, Mavale MS, Ghodke YS, George RP et al. Preliminary findings on Bagaza virus (Flavivirus: Flaviviridae) growth kinetics, transmission potential & transovarial transmission in three species of mosquitoes. Indian J Med Res 2013; 138:257–261[PubMed]
    [Google Scholar]
  5. Meulen KM Van Der, Pensaert MB. West Nile virus in the vertebrate world brief review. Arch Virol 2005; 150:637–657
    [Google Scholar]
  6. Weissenböck H, Bakonyi T, Rossi G, Mani P, Nowotny N et al. Emerg Infect Dis 1996; 2013:1996–1999
    [Google Scholar]
  7. Erdély K, Ursu K, Ferenczi E, Szeredi L, Fer Rátz et al. Clinical and pathologic features of lineage 2 West Nile virus infections in birds of Prey in Hungary. Vector borne zoonotic dis 2007; 7:181–188
    [Google Scholar]
  8. Agüero M, Fernández-Pinero J, Buitrago D, Sánchez A, Elizalde M et al. Bagaza virus in partridges and pheasants, Spain, 2010. Emerg Infect Dis 2011; 17:1498–1501
    [Google Scholar]
  9. Cao Z, Zhang C, Liu Y, Liu Y, Ye W et al. Tembusu virus in ducks, China. Emerg Infect Dis 2011; 17:1873–1875 [View Article][PubMed]
    [Google Scholar]
  10. Bondre VP, Sapkal GN, Yergolkar PN, Fulmali P V, Sankararaman V et al. Genetic characterization of Bagaza virus (BAGV) isolated in India and evidence of anti-BAGV antibodies in sera collected from encephalitis patients. J Gen Virol 2009; 90:2644–2649
    [Google Scholar]
  11. Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile virus: biology, transmission, and human infection. Clin Microbiol Rev 2012; 25:635–648
    [Google Scholar]
  12. Tang Y, Gao X, Diao Y, Feng Q, Chen H et al. Tembusu virus in Human, China. Trans Emerg Dis 2013; 60:193–196
    [Google Scholar]
  13. Gaibani P, Rossini G. An overview of Usutu virus. Microbes Infect 2017; 19:382–387
    [Google Scholar]
  14. Petersen LR, Brault AC, Nasci RS. West Nile virus: review of the literature. Jama 2013; 310:308–315
    [Google Scholar]
  15. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G et al. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 2017; 98:2–3
    [Google Scholar]
  16. Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S et al. A highly structured, nuclease-resistant, noncoding RNA produced by Flaviviruses is required for pathogenicity. Cell Host Microbe 2008; 4:579–591
    [Google Scholar]
  17. Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the Flavivirus life cycle. Nat Rev 2005; 3:13–22
    [Google Scholar]
  18. Huang J, Jia R, Shen H, Wang M, Zhu D. Oral delivery of a DNA vaccine expressing the PrM and E genes: a promising vaccine strategy against Flavivirus in Ducks. Sci Rep 2018; 8:22360
    [Google Scholar]
  19. Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine 2013; 31:461–471
    [Google Scholar]
  20. Chen S, Wu Z, Wang M, Cheng A. Innate immune evasion mediated by flaviviridae non-structural proteins. Viruses 2017; 9:1–19
    [Google Scholar]
  21. Maharaj PD, Bosco-Lauth AM, Langevin SA, Anishchenko M, Bowen RA et al. West Nile and St. Louis encephalitis viral genetic determinants of avian host competence. PLoS Negl Trop Dis 2018; 12:e0006302
    [Google Scholar]
  22. Dietrich EA, Langevin SA, Huang CYH, Maharaj PD, Delorey MJ et al. West Nile virus temperature sensitivity and avian virulence are modulated by NS1-2B polymorphisms. PLoS Negl Trop Dis 2016; 10:e0004938
    [Google Scholar]
  23. Moureau G, Cook S, Lemey P, Nougairede A, Forrester L et al. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One 2015; 10:e0117849
    [Google Scholar]
  24. Geller J, Nazarova L, Katargina O, Leivits A, Järvekülg L et al. Tick-borne pathogens in ticks feeding on migratory passerines in western part of Estonia. Vector-Borne Zoonotic Dis 2013; 13:443–448
    [Google Scholar]
  25. Bogovic P, Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases 2015; 3:430–441
    [Google Scholar]
  26. Hudson P, Gould E, Laurenson K, Gaunt M, Reid H et al. The epidemiology of louping-ill, a tick borne infection of red grouse (Lagopus lagopus scoticus). Parassitologia 1997; 39:319–323
    [Google Scholar]
  27. Selvey LA, Johansen CA, Broom AK, Antão C, Lindsay MD et al. Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the North of Western Australia. BMC Infect dis 2014; 14:672
    [Google Scholar]
  28. Diaz LA, Quaglia AI, Konigheim BS. Activity Patterns of St. Louis Encephalitis and West Nile viruses in free ranging birds during a human encephalitis outbreak in argentina. PLoS One 2016; 11:e0161871
    [Google Scholar]
  29. Weissenböck H, Kolodziejek J, Fragner K, Kuhn R, Pfeffer M et al. Usutu virus activity in Austria, 2001–2002. Microbes Infect 2003; 5:1132–1136
    [Google Scholar]
  30. Fernandez-Pinero J, Davidson I, Elizalde M, Perk S, Khinich Y et al. Bagaza virus and Israel Turkey meningoencephalomyelitis virus are a single virus species. J Gen Virol 2014; 95:883–887
    [Google Scholar]
  31. Cadar D, Lühken R, Jeugd H Van Der, Garigliany M, Ziegler U et al. Widespread activity of multiple lineages of Usutu virus, western Europe, 2016. Euro Surveill 2016; 22:1–7
    [Google Scholar]
  32. Gaibani P, Cavrini F, Gould EA, Rossini G, Pierro A et al. Comparative genomic and phylogenetic analysis of the first usutu virus isolate from a human patient presenting with neurological symptoms. PLoS One 2013; 8:e64761
    [Google Scholar]
  33. Fall G, Paola N Di, Faye M, Dia M, Ce C et al. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis 2017; 11:e0006078
    [Google Scholar]
  34. Gray TJ, Webb CE. A review of the epidemiological and clinical aspects of West Nile virus. Int J Gen Med 2014; 7:193–203
    [Google Scholar]
  35. Aliota MT, Jones SA, Ii APD, Ciota AT, Hubalek Z et al. Characterization of Rabensburg virus, a Flavivirus closely related to West Nile virus of the Japanese encephalitis antigenic group. PLoS One 2012; 7:e39387
    [Google Scholar]
  36. David S, Abraham AM. Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen pathogen. J infect dis 2016; 48:571–586
    [Google Scholar]
  37. Brault AC, Langevin SA, Bowen RA, Panella NA, Biggerstaff BJ et al. Differential virulence of West Nile strains for American crows. Emerg Infect Dis 2004; 10:2161–2168
    [Google Scholar]
  38. Brault AC, Huang CY, Langevin SA, Kinney RM, Richard A et al. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 2007; 39:1162–1166
    [Google Scholar]
  39. del AJ, Llorente F, Figuerola J, Soriguer RC, Moreno AM et al. Experimental infection of house sparrows (Passer domesticus) with West Nile virus isolates of Euro-Mediterranean and North American origins. Vet Res 2014; 45:33
    [Google Scholar]
  40. Langevin S, Brault AC, Collins F, Panella NA, Services H et al. Variation in virulence of West Nile virus strains for house sparrows (Passer Domesticus). Am J Trop Med Hyg 2005; 72:99–102
    [Google Scholar]
  41. Sotelo E, Gutierrez-Guzmán AV, Amo J, Llorente F, El-Harrak M et al. Pathogenicity of two recent Western Mediterranean West Nile virus isolates in a wild bird species indigenous to Southern Europe: the red-legged partridge. Vet Res 2011; 42:11
    [Google Scholar]
  42. Dridi M, Berg T Van Den, Lecollinet S, Lambrecht B. Evaluation of the pathogenicity of West Nile virus (WNV) lineage 2 strains in a SPF chicken model of infection: NS3-249Pro mutation is neither sufficient nor necessary for conferring virulence. Vet Res 2015; 46:130
    [Google Scholar]
  43. Langevin SA, Bowen RA, Reisen WK, Andrade CC, Ramey WN et al. Host competence and helicase activity differences exhibited by west nile viral variants expressing NS3-249 amino acid polymorphisms. PLoS One 2014; 9:e100802
    [Google Scholar]
  44. Dietrich EA, Bowen RA, Brault AC, Collins F. An ex vivo avian leukocyte culture model for West Nile virus infection. J Virol Methods 2015; 218:19–22
    [Google Scholar]
  45. Kono Y, Tsukamoto K, Hamid M, Darus A, Lian T et al. Encephalitis and retarded growth of chicks caused by Sitiawan virus, a new isolate belonging to the genus Flavivirus. Am J Trop Med Hyg 2000; 63:94–101
    [Google Scholar]
  46. Liu P, Hao LU, Shuang LI, Ying WU, Gao GF et al. Duck egg drop syndrome virus: an emerging Tembusu-related flavivirus in China. Sci China Life Sci 2013; 56:701–710
    [Google Scholar]
  47. Homonnay ZG, Kovács EW, Bányai K, Fehér E, Mató T et al. Tembusu-like flavivirus (Perak virus) as the cause of neurological disease outbreaks in young pekin ducks. Avian Pathol 2014; 43:552–560
    [Google Scholar]
  48. Vaidya NK, Wang F, Zou X, Wahl LM. Transmission dynamics of the recently-identified BYD virus causing duck egg-drop syndrome. PLoS One 2012; 7:e35161
    [Google Scholar]
  49. Brault AC, Langevin SA, Ramey WN, Fang Y, Beasley DWC et al. Reduced avian virulence and viremia of West Nile virus isolates from Mexico and Texas. Am J Trop Med Hyg 2011; 85:758–767
    [Google Scholar]
  50. Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM et al. N-Linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol 2005; 79:13262–13274
    [Google Scholar]
  51. Murata R, Eshita Y, Maeda A, Maeda J, Akita S et al. Glycosylation of the West Nile virus envelope protein increases in vivo and in vitro viral multiplication in birds Glycosylation of the West Nile virus envelope protein increases in vivo and in vitro viral multiplication in birds. Am J Trop Med Hyg 2010; 82:696–704
    [Google Scholar]
  52. Totani M, Yoshii K, Kariwa H, Takashima I, Totani M et al. Glycosylation of the envelope protein of West Nile virus affects its replication in chicks glycosylation of the envelope protein of West Nile virus affects its replication in chicks. Avian Dis 2011; 55:561–568
    [Google Scholar]
  53. Yan D, Shi Y, Wang H, Li G, Li X et al. A single mutation at position 156 in the envelope protein of Tembusu virus is responsible for virus tissue tropism and transmissibility in ducks. J Virol 2018; 92:e0042718
    [Google Scholar]
  54. Woodall J. The viruses isolated from arthropods at the East African virus research institute in the 26 years ending December 1963. Proc E Afr Acad 1964:141–146
    [Google Scholar]
  55. Weissenböck H, Kolodziejek J, Url A, Lussy H, Rebel-Bauder B et al. Emergence of Usutu virus, an African Mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg Infect Dis 2002; 8:652–656
    [Google Scholar]
  56. Engel D, Jöst H, Wink M, Börstler J, Bosch S et al. Reconstruction of the evolutionary history and dispersal of Usutu virus, a neglected emerging arbovirus in Europe and Africa. MBio 2016; 7:e0193815
    [Google Scholar]
  57. Ziegler U, Fast C, Eiden M, Bock S, Schulze C et al. Evidence for an independent third Usutu virus introduction into Germany. Vet Microbiol 2016; 192:60–66
    [Google Scholar]
  58. Ciota A, Kramer L. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 2013; 5:3021–3047
    [Google Scholar]
  59. Work T, Hurlbut H, Taylor R. Isolation of West Nile virus from hooded crow and rock pigeon in the Nile delta. Proc Soc Exp Biol Med 1953; 84:719–722
    [Google Scholar]
  60. Malkinson M, Banet C, Weisman Y, Pokamunski S, King R et al. Introduction of West Nile virus in the Middle East by migrating white storks. Emerg Infect Dis 2002; 8:392–397
    [Google Scholar]
  61. Urray KOM, Ertens EM, Espre PD. West Nile virus and its emergence in the United States of America. Vet Res 2010; 41:67
    [Google Scholar]
  62. Centers for Disease Control and Prevention https://www.cdc.gov/westnile/dead-birds/index.html accessed 22 September 2018
  63. California Department of Food and Agriculture Equine West Nile virus; 2018 https://www.cdfa.ca.gov/ahfss/Animal_Health/wnv_info.html accessed 27 September 2018
  64. Centers for Disease Control and Prevention https://www.cdc.gov/westnile/statsmaps/cumMapsData.html accessed 22 September 2018
  65. Beck C, Jimenez-Clavero MA, Leblond A, Durand B, Nowotny N et al. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. Int J Environ Res Public Health 2013; 10:6049–6083 [View Article][PubMed]
    [Google Scholar]
  66. Digoutte J. Bagaza (BAG) strain: Dak Ar B 209. Am J Trop Med Hyg 1978; 27:376–377
    [Google Scholar]
  67. Diallo M, Nabeth P, Ba K, Sall AA, Ba Y et al. Mosquito vectors of the 1998 – 1999 outbreak of Rift Valley Fever and other arboviruses (Bagaza, Sanar, Wesselsbron and West Nile) in Mauritania and Senegal. Med Vet Entomol 2005; 19:119–126
    [Google Scholar]
  68. Garcia-Bocanegra I, Zorrilla I, Rodrı´guez E, Rayas E, Camacho L et al. Monitoring of the Bagaza virus epidemic in wild bird species in Spain, 2010. Trans Emerg Dis 2012; 60:120–126
    [Google Scholar]
  69. Pérez-Ramírez E, Llorente F, J-C. Experimental infections of wild birds with West Nile virus. Viruses 2014; 6:752–781
    [Google Scholar]
  70. Barnard BJH, Buys SB, Preez Jh DU, Greyling SP, Venter HJ. Turkey meningo-encephalitis in south africa. J vet Res 1980; 47:89–94
    [Google Scholar]
  71. Wallace HG, Rudinick A, Rajagopal V. Activity of Tembusu and Umbre viruses in a Malaysian community: mosquito studies. Mosq News 1977; 37:35–42
    [Google Scholar]
  72. Su J, Li S, Hu X, Yu X, Wang Y et al. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PLoS One 2011; 6:e18106
    [Google Scholar]
  73. Thontiravong A, Ninvilai P, Tunterak W, Nonthabenjawan N, Chaiyavong S et al. Tembusu-related flavivirus in ducks, Thailand. Emerg Infect Dis 2015; 21:2164–2167
    [Google Scholar]
  74. Mackenzie JS, Williams DT. The zoonotic flaviviruses of Southern, South-Eastern and Eastern Asia, and Australasia: The potential for emergent viruses. Zoonoses Public Health 2009; 56:338–356
    [Google Scholar]
  75. Chen S, Wang L, Chen J, Zhang L, Wang S. Avian interferon-inducible transmembrane protein family effectively restricts avian Tembusu virus infection. Front Microbio 2017; 8:672
    [Google Scholar]
  76. Bravermany D I, Chizov-Ginzburg A, Chastel C. Detection of Israel turkey meningo-encephalitis virus from mosquito (Diptera: Culicidae) and Culicoides (Diptera: Ceratopogonidae) species and its survival in Culex pipiens and Phlebotomus papatasi (Diptera: Phlebotomidae). J Med Entomol 2003; 40:518–521
    [Google Scholar]
  77. Cadar D, Becker N, Campos R de MJB, Jöst H, Schmidt-Chanasit J. Usutu virus in bats, Germany, 2013. Emerg Infect Dis 2014; 20:1771–1772
    [Google Scholar]
  78. García-Bocanegra I, Paniagua J, Gutiérrez-Guzmán A V, Lecollinet S, Boadella M et al. Spatio-temporal trends and risk factors affecting West Nile virus and related flavivirus exposure in Spanish wild ruminants. BMC Vet Res 2016; 12:1–9
    [Google Scholar]
  79. Durand B, Haskouri H, Lowenski S, Vachiery N, Beck C et al. Seroprevalence of West Nile and Usutu viruses in military working horses and dogs, Morocco, 2012: dog as an alternative WNV sentinel species?. Epidemiol Infect 2016; 144:1857–1864 [View Article][PubMed]
    [Google Scholar]
  80. Hagman K, Barboutis C, Ehrenborg C, Fransson T, Jaenson TGT et al. On the potential roles of ticks and migrating birds in the ecology of West Nile virus. Infect Ecol Epidemiol 2014; 4:20943
    [Google Scholar]
  81. Lawrie CH, Uzcátegui NY, Gould EA, Nuttall PA. Ixodid and argasid tick species and West Nile virus. Emerg Infect Dis 2004; 10:653–657
    [Google Scholar]
  82. Dusek RJ, McLean RG, Kramer LD, Ubico SR, Apd I et al. Prevalence of West Nile virus in migratory birds during spring and fall migration. Am J Trop Med Hyg 2009; 81:1151–1158
    [Google Scholar]
  83. Owen J, Moore F, Panella N, Edwards E, Bru R et al. Migrating birds as dispersal vehicles for West Nile Virus. Ecohealth 2006; 3:79–85
    [Google Scholar]
  84. Di Giallonardo F, Geoghegan JL, Docherty DE, McLean RG, Zody MC et al. Fluid spatial dynamics of West Nile virus in the United States: rapid spread in a permissive host environment. J Virol 2016; 90:862–872
    [Google Scholar]
  85. Lühken R, Jöst H, Cadar D, Thomas SM, Bosch S et al. Distribution of Usutu virus in Germany and Its effect on breeding bird populations. Emerg Infect Dis 2017; 23:1991–1998
    [Google Scholar]
  86. Llorente F, Pérez-Ramírez E, Fernández-Pinero J, Elizalde M, Figuerola J et al. Bagaza virus is pathogenic and transmitted by direct contact in experimentally infected partridges, but is not infectious in house sparrows and adult mice. Vet Res 2015; 46:93
    [Google Scholar]
  87. Gómez CC, Llorente F, Ramírez EP, Soriguer RC, Sarasa M et al. Experimental infection of grey partridges with Bagaza virus : pathogenicity evaluation and potential role as a competent host. Vet Res 2018; 49:44
    [Google Scholar]
  88. Davidson I, Grinberg R, Malkinson M, Mechani S, Pokamunski S. Diagnosis of turkey meningoencephalitis virus infection in field cases by RT-PCR compared to virus isolation in embryonated eggs and suckling mice. Avian Pathol 2000; 29:35–39
    [Google Scholar]
  89. Liu M, Chen S, Chen Y, Liu C, Chen S et al. Adapted Tembusu-Like virus in chickens and geese in China. J Clin Microbiol 2012; 50:2807–2809
    [Google Scholar]
  90. Sun XY, Diao YX, Wang J, Liu X, Al L et al. Tembusu virus infection in Cherry Valley ducks: the effect of age at infection. Vet Microbiol 2014; 168:16–24
    [Google Scholar]
  91. Li N, Lv C, Yue R, Shi Y, Wei L et al. Effect of age on the pathogenesis of duck tembusu virus in Cherry Valley ducks. Front Microbiol 2015; 6:581
    [Google Scholar]
  92. Gamino V, Fernández-de-Mera IG, Ortíz J, Durán-Martín M, Fuente J De et al. Natural Bagaza virus infection in game birds in Southern Spain. Vet Res 2012; 43:65
    [Google Scholar]
  93. Chvala S, Bakonyi T, Hackl R, Hess M, Nowotny N et al. Limited pathogenicity of Usutu virus for the domestic chicken (Gallus domesticus) Following Experimental Inoculation. Avian Pathol 2005; 34:392–395
    [Google Scholar]
  94. Chvala S, Bakonyi T, Hackl R, Hess M, Nowotny N et al. Limited pathogenicity of Usutu virus for the domestic goose (Anser anser f. domestica) following experimental inoculation. J Vet Med 2006; 53:171–175
    [Google Scholar]
  95. Banet-Noach C, Simanov L, Malkinson M. Direct (non-vector) transmission of West Nile virus in geese. Avian Pathol 2003; 32:489–494 [View Article][PubMed]
    [Google Scholar]
  96. Langevin SA, Bunning M, Davis B, Komar N. Experimental infection of chickens as candidate sentinels for West Nile Virus. Emerg Infect Dis 2001; 7:726–729
    [Google Scholar]
  97. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E et al. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 2003; 9:311–322
    [Google Scholar]
  98. Nemeth N, Gould D, Bowen R, Komar N. Natural and experimental West Nile virus infection in five raptor species. J Wildl Dis 2006; 42:1–13
    [Google Scholar]
  99. Nemeth NM, Hahn DC, Gould DH, Bowen RA. Experimental West Nile virus infection in Eastern Screech owls (Megascops asio). Avian Dis 2006; 50:252–258
    [Google Scholar]
  100. Reisen WK. Ecology of West Nile Virus in North America. Viruses 2013; 5:2079–2105
    [Google Scholar]
  101. Bertran K, Costa TP, Rivas R, Solanes D, Bensaid A et al. Experimental west nile virus infection in gyr-saker hybrid falcons. Vector Borne Zoonotic Dis 2012; 12:482–489
    [Google Scholar]
  102. Davidson I, Natour-Altory A, Raibstein I, Kin E, Dahan Y et al. Monitoring the uptake of live avian vaccines by their detection in feathers. Vaccine 2018; 36:637–643 [View Article]
    [Google Scholar]
  103. Ianconescu M, Aharonovici A, Samberg Y, Hornstein K. Turkey meningo ‐ encephalitis: pathogenic and immunological aspects of the infection. Avian Pathol 1973; 2:251–262
    [Google Scholar]
  104. Yun T, Ye W, Ni Z, Zhang D, Zhang C. Identification and molecular characterization of a novel flavivirus isolated from Pekin ducklings in China. Vet Microbiol 2012; 157:311–319 [View Article][PubMed]
    [Google Scholar]
  105. Li X, Shi Y, Liu Q, Wang Y, Li G et al. Airborne transmission of a novel Tembusu virus in ducks. J Clin Microbiol 2015; 53:2734–2736 [View Article][PubMed]
    [Google Scholar]
  106. Li G, Gao X, Xiao Y, Liu S, Peng S et al. Development of a live attenuated vaccine candidate against duck Tembusu viral disease. Virology 2014; 450-451:233233–242 [View Article][PubMed]
    [Google Scholar]
  107. Zhang Y, Li X, Chen H, Ti J, Yang G et al. Evidence of possible vertical transmission of Tembusu virus in ducks. Vet Microbiol 2015; 179:149–154 [View Article][PubMed]
    [Google Scholar]
  108. King NJ, Getts DR, Getts MT, Rana S, Shrestha B et al. Immunopathology of flavivirus infections. Immunol Cell Biol 2007; 85:33–42 [View Article][PubMed]
    [Google Scholar]
  109. Gamino V, Höfle U. Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res 2013; 44:39 [View Article][PubMed]
    [Google Scholar]
  110. Wu L, Liu J, Chen P, Jiang Y, Ding L et al. The sequential tissue distribution of duck Tembusu virus in adult ducks. Biomed Res Int 2014; 2014:1–7 [View Article][PubMed]
    [Google Scholar]
  111. Jarvi SI, Lieberman MM, Hofmeister E, Nerurkar VR, Wong T et al. Protective efficacy of a recombinant subunit West Nile virus vaccine in domestic geese (Anser anser). Vaccine 2008; 26:5338–5344 [View Article][PubMed]
    [Google Scholar]
  112. Styer LM, Bernard KA, Kramer LD. Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose. Am J Trop Med Hyg 2006; 75:337–345[PubMed]
    [Google Scholar]
  113. Ianconescu M. Turkey meningo-encephalitis: a general review. Avian Dis 1975; 20:135–138
    [Google Scholar]
  114. Garigliany M, Linden A, Gilliau G, Levy E, Sarlet M et al. Usutu virus, Belgium, 2016. Infect Genet Evol 2017; 48:116–119 [View Article][PubMed]
    [Google Scholar]
  115. Huang X, Han K, Zhao D, Liu Y, Zhang J et al. Identification and molecular characterization of a novel flavivirus isolated from geese in China. Res Vet Sci 2013; 94:774–780 [View Article][PubMed]
    [Google Scholar]
  116. Pauli AM, Cruz-Martinez LA, Ponder JB, Redig PT, Glaser AL et al. Ophthalmologic and oculopathologic findings in red-tailed hawks and Cooper’ s hawks with naturally acquired West Nile virus infection. J Am Vet Med Assoc 2007; 231:1240–1248 [View Article][PubMed]
    [Google Scholar]
  117. Gamino V, Escribano-Romero E, Gutiérrez-Guzmán AV, Blázquez AB, Saiz JC et al. Oculopathologic findings in flavivirus-infected gallinaceous birds. Vet Pathol 2014; 51:1113–1116 [View Article][PubMed]
    [Google Scholar]
  118. Zhang L, Li Z, Zhang Q, Sun M, Li S et al. Efficacy assessment of an inactivated Tembusu virus vaccine candidate in ducks. Res Vet Sci 2017; 110:72–78 [View Article][PubMed]
    [Google Scholar]
  119. Ahlers LRH, Goodman AG. The immune responses of the animal hosts of West Nile virus: a comparison of insects, birds, and mammals. Front Cell Infect Microbiol 2018; 8:96 [View Article][PubMed]
    [Google Scholar]
  120. Zhao D, Han K, Huang X, Zhang L, Wang H et al. Screening and identification of B-cell epitopes within envelope protein of tembusu virus. Virol J 2018; 15:142 [View Article][PubMed]
    [Google Scholar]
  121. Tang J, Bi Z, Ding M, Yin D, Zhu J et al. Immunization with a suicidal DNA vaccine expressing the E glycoprotein protects ducklings against duck Tembusu virus. Virol J 2018; 15:140 [View Article][PubMed]
    [Google Scholar]
  122. Wheeler SS, Langevin SA, Brault AC, Woods L, Carroll BD et al. Detection of persistent west nile virus RNA in experimentally and naturally infected avian hosts. Am J Trop Med Hyg 2012; 87:559–564 [View Article][PubMed]
    [Google Scholar]
  123. Bakonyi T, Gajdon GK, Schwing R, Vogl W, Häbich AC et al. Chronic West Nile virus infection in kea (Nestor notabilis). Vet Microbiol 2016; 183:135–139 [View Article][PubMed]
    [Google Scholar]
  124. Spedicato M, Carmine I, Bellacicco AL, Marruchella G, Marini V et al. Experimental infection of rock pigeons (Columba livia) with three West Nile virus lineage 1 strains isolated in Italy between 2009 and 2012. Epidemiol Infect 2016; 144:1301–1311 [View Article][PubMed]
    [Google Scholar]
  125. Chaintoutis SC, Dovas CI, Papanastassopoulou M, Gewehr S, Danis K et al. Evaluation of a West Nile virus surveillance and early warning system in Greece, based on domestic pigeons. Comp Immunol Microbiol Infect Dis 2014; 37:131–141 [View Article][PubMed]
    [Google Scholar]
  126. Calzolari M, Gaibani P, Bellini R, Defilippo F, Pierro A et al. Mosquito, bird and human surveillance of West Nile and Usutu viruses in Emilia-Romagna Region (Italy) in 2010. PLoS One 2012; 7:e38058 [View Article][PubMed]
    [Google Scholar]
  127. Steinmetz HW, Bakonyi T, Weissenböck H, Hatt JM, Eulenberger U et al. Emergence and establishment of Usutu virus infection in wild and captive avian species in and around Zurich, Switzerland-genomic and pathologic comparison to other central European outbreaks. Vet Microbiol 2011; 148:207–212 [View Article][PubMed]
    [Google Scholar]
  128. Carney RM, Husted S, Jean C, Glaser C, Kramer V. Efficacy of aerial spraying of mosquito adulticide in reducing incidence of West Nile Virus, California, 2005. Emerg Infect Dis 2008; 14:747–754 [View Article][PubMed]
    [Google Scholar]
  129. Reisen WK, Wheeler SS. Surveys for antibodies against mosquitoborne encephalitis viruses in California birds, 1996-2013. Vector Borne Zoonotic Dis 2016; 16:264–282 [View Article][PubMed]
    [Google Scholar]
  130. Kilpatrick AM, Dupuis AP, Chang GJ, Kramer LD. DNA vaccination of American Robins (Turdus migratorius) against West Nile virus. Vector Borne Zoonotic Dis 2010; 10:377–380 [View Article][PubMed]
    [Google Scholar]
  131. Angenvoort J, Fischer D, Fast C, Ziegler U, Eiden M et al. Limited efficacy of West Nile virus vaccines in large falcons (Falco spp.). Vet Res 2014; 45:41–12 [View Article]
    [Google Scholar]
  132. Fischer D, Angenvoort J, Ziegler U, Fast C, Maier K et al. DNA vaccines encoding the envelope protein of West Nile virus lineages 1 or 2 administered intramuscularly, via electroporation and with recombinant virus protein induce partial protection in large falcons (Falco spp.). Vet Res 2015; 46:87 [View Article][PubMed]
    [Google Scholar]
  133. Turell MJ, Bunning M, Ludwig GV, Ortman B, Chang J et al. DNA vaccine for West Nile virus infection in fish crows (Corvus ossifragus). Emerg Infect Dis 2003; 9:1077–1081 [View Article][PubMed]
    [Google Scholar]
  134. Boyce WM, Vickers W, Morrison SA, Sillett TS, Caldwell L et al. Surveillance for West Nile virus and vaccination of free-ranging island scrub-jays (Aphelocoma insularis) on Santa Cruz Island, California. Vector Borne Zoonotic Dis 2011; 11:1063–1068 [View Article][PubMed]
    [Google Scholar]
  135. Bunning ML, Fox PE, Bowen RA, Komar N, Chang GJ et al. DNA vaccination of the American crow (Corvus brachyrhynchos) provides partial protection against lethal challenge with West Nile virus. Avian Dis 2007; 51:573–577 [View Article][PubMed]
    [Google Scholar]
  136. Iyer A, Kousoulas K. A review of vaccine approaches for West Nile virus. Int J Environ Res Public Health 2013; 10:4200–4223 [View Article]
    [Google Scholar]
  137. Wheeler SS, Langevin S, Woods L, Carroll BD, Vickers W et al. Efficacy of three vaccines in protecting Western Scrub-Jays (Aphelocoma californica) from experimental infection with West Nile virus: implications for vaccination of Island Scrub-Jays (Aphelocoma insularis). Vector Borne Zoonotic Dis 2011; 11:1069–1080 [View Article][PubMed]
    [Google Scholar]
  138. Young JA, Young JA, Jefferies W. Towards the conservation of endangered avian species: a recombinant West Nile Virus vaccine results in increased humoral and cellular immune responses in Japanese Quail (Coturnix japonica). PLoS One 2013; 8:e67137 [View Article][PubMed]
    [Google Scholar]
  139. Langevin SA, Arroyo J, Monath TP, Komar N. Host-range restriction of chimeric yellow fever-West Nile vaccine in fish crows (Corvus ossifragus). Am J Trop Med Hyg 2003; 69:78–80 [View Article][PubMed]
    [Google Scholar]
  140. Pletnev AG, Swayne DE, Speicher J, Rumyantsev AA, Murphy BR. Chimeric West Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. Vaccine 2006; 24:6392–6404 [View Article][PubMed]
    [Google Scholar]
  141. Malkinson M, Banet C, Khinich Y, Samina I, Pokamunski S et al. Use of live and inactivated vaccines in the control of West Nile fever in domestic geese. Ann N Y Acad Sci 2001; 951:255–261 [View Article][PubMed]
    [Google Scholar]
  142. Davidson I, Raibstein I, Altory-Natour A, Simanov M, Khinich Y. Development of duplex dual-gene and DIVA real-time RT-PCR assays and use of feathers as a non-invasive sampling method for diagnosis of Turkey Meningoencephalitis Virus. Avian Pathol 2017; 46:256–264 [View Article][PubMed]
    [Google Scholar]
  143. Ianconescu M, Hornstein K, Samberg Y, Aharonovici A, Merdinger M. Development of a new vaccine against turkey meningo-encephalitis using a virus passaged through the Japanese quail (Coturnix coturnix japonica). Avian Pathol 1975; 4:119–131 [View Article][PubMed]
    [Google Scholar]
  144. Huang J, Shen H, Jia R, Wang M, Chen S et al. Oral vaccination with a DNA vaccine encoding capsid protein of duck Tembusu virus induces protection immunity. Viruses 2018; 10:180 [View Article][PubMed]
    [Google Scholar]
  145. Chen P, Liu J, Jiang Y, Zhao Y, Li Q et al. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus. Vaccine 2014; 32:5271–5277 [View Article][PubMed]
    [Google Scholar]
  146. Zou Z, Huang K, Wei Y, Chen H, Liu Z et al. Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection. Sci Rep 2017; 7:1478 [View Article][PubMed]
    [Google Scholar]
  147. Sun M, Dong J, Li L, Lin Q, Sun J et al. Recombinant Newcastle Disease Virus (NDV) expressing Duck Tembusu virus (DTMUV) pre-membrane and envelope proteins protects ducks against DTMUV and NDV challenge. Vet Microbiol 2018; 218:60–69 [View Article][PubMed]
    [Google Scholar]
  148. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  149. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001203
Loading
/content/journal/jgv/10.1099/jgv.0.001203
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error