1887

Abstract

Protecting against persistent viruses is an unsolved challenge. The clearest example for a gamma-herpesvirus is resistance to super-infection by Murid herpesvirus-4 (MuHV-4). Most experimental infections have delivered MuHV-4 into the lungs. A more likely natural entry site is the olfactory epithelium. Its protection remains unexplored. Here, prior exposure to olfactory MuHV-4 gave good protection against super-infection. The protection was upstream of B cell infection, which occurs in lymph nodes, and showed redundancy between antibody and T cells. Adding antibody to virions that blocked heparan binding strongly reduced olfactory host entry – unlike in the lungs, opsonized virions did not reach IgG Fc receptor myeloid cells. However, the nasal antibody response to primary infection was too low to reduce host entry. Instead, the antibody acted downstream, reducing viral replication in the olfactory epithelium. This depended on IgG Fc receptor engagement rather than virion neutralization. Thus antibody can protect against natural γ-herpesvirus infection before it reaches B cells and independently of neutralization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001183
2018-12-10
2019-09-18
Loading full text...

Full text loading...

References

  1. Tibbetts SA, McClellan JS, Gangappa S, Speck SH, Virgin HW. Effective vaccination against long-term gammaherpesvirus latency. J Virol 2003;77:2522–2529 [CrossRef][PubMed]
    [Google Scholar]
  2. Boname JM, Coleman HM, May JS, Stevenson PG. Protection against wild-type murine gammaherpesvirus-68 latency by a latency-deficient mutant. J Gen Virol 2004;85:131–135 [CrossRef][PubMed]
    [Google Scholar]
  3. Fowler P, Efstathiou S. Vaccine potential of a murine gammaherpesvirus-68 mutant deficient for ORF73. J Gen Virol 2004;85:609–613 [CrossRef][PubMed]
    [Google Scholar]
  4. Kayhan B, Yager EJ, Lanzer K, Cookenham T, Jia Q et al. A replication-deficient murine gamma-herpesvirus blocked in late viral gene expression can establish latency and elicit protective cellular immunity. J Immunol 2007;179:8392–8402 [CrossRef][PubMed]
    [Google Scholar]
  5. Freeman ML, Burkum CE, Woodland DL, Sun R, Wu TT et al. Importance of antibody in virus infection and vaccine-mediated protection by a latency-deficient recombinant murine γ-herpesvirus-68. J Immunol 2012;188:1049–1056 [CrossRef][PubMed]
    [Google Scholar]
  6. Stevenson PG, Cardin RD, Christensen JP, Doherty PC. Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol 1999;80:477–483 [CrossRef][PubMed]
    [Google Scholar]
  7. Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash T. Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 1998;187:1941–1951 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim IJ, Flaño E, Woodland DL, Blackman MA. Antibody-mediated control of persistent gamma-herpesvirus infection. J Immunol 2002;168:3958–3964 [CrossRef][PubMed]
    [Google Scholar]
  9. Faulkner GC, Burrows SR, Khanna R, Moss DJ, Bird AG et al. X-Linked agammaglobulinemia patients are not infected with Epstein-Barr virus: implications for the biology of the virus. J Virol 1999;73:1555–1564[PubMed]
    [Google Scholar]
  10. Green M, Michaels MG, Katz BZ, Burroughs M, Gerber D et al. CMV-IVIG for prevention of Epstein Barr virus disease and posttransplant lymphoproliferative disease in pediatric liver transplant recipients. Am J Transplant 2006;6:1906–1912 [CrossRef][PubMed]
    [Google Scholar]
  11. Ho M, Jaffe R, Miller G, Breinig MK, Dummer JS et al. The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children. Transplantation 1988;45:719–726 [CrossRef][PubMed]
    [Google Scholar]
  12. Gangappa S, Kapadia SB, Speck SH, Virgin HW. Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 2002;76:11460–11468 [CrossRef][PubMed]
    [Google Scholar]
  13. Rickinson A. Epstein-Barr virus. Virus Res 2002;82:109–113 [CrossRef][PubMed]
    [Google Scholar]
  14. Thorley-Lawson DA, Geilinger K. Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity. Proc Natl Acad Sci USA 1980;77:5307–5311 [CrossRef][PubMed]
    [Google Scholar]
  15. Sokal EM, Hoppenbrouwers K, Vandermeulen C, Moutschen M, Léonard P et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis 2007;196:1749–1753 [CrossRef][PubMed]
    [Google Scholar]
  16. Janz A, Oezel M, Kurzeder C, Mautner J, Pich D et al. Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 2000;74:10142–10152 [CrossRef][PubMed]
    [Google Scholar]
  17. Dunmire SK, Grimm JM, Schmeling DO, Balfour HH, Hogquist KA. The incubation period of primary epstein-barr virus infection: viral dynamics and immunologic events. PLoS Pathog 2015;11:e1005286 [CrossRef][PubMed]
    [Google Scholar]
  18. Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011;29:351–397 [CrossRef][PubMed]
    [Google Scholar]
  19. Gillet L, Frederico B, Stevenson PG. Host entry by gamma-herpesviruses-lessons from animal viruses?. Curr Opin Virol 2015;15:34–40 [CrossRef][PubMed]
    [Google Scholar]
  20. Milho R, Frederico B, Efstathiou S, Stevenson PG. A heparan-dependent herpesvirus targets the olfactory neuroepithelium for host entry. PLoS Pathog 2012;8:e1002986 [CrossRef][PubMed]
    [Google Scholar]
  21. Shivkumar M, Milho R, May JS, Nicoll MP, Efstathiou S et al. Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry. J Virol 2013;87:10477–10488 [CrossRef][PubMed]
    [Google Scholar]
  22. Farrell HE, Lawler C, Tan CS, Macdonald K, Bruce K et al. Murine cytomegalovirus exploits olfaction to enter new hosts. mBio 2016;7:e00251 [CrossRef][PubMed]
    [Google Scholar]
  23. Milho R, Smith CM, Marques S, Alenquer M, May JS et al. In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 2009;90:21–32 [CrossRef][PubMed]
    [Google Scholar]
  24. Lawler C, Milho R, May JS, Stevenson PG. Rhadinovirus host entry by co-operative infection. PLoS Pathog 2015;11:e1004761 [CrossRef][PubMed]
    [Google Scholar]
  25. Hayashi K, Hayashi M, Jalkanen M, Firestone JH, Trelstad RL et al. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J Histochem Cytochem 1987;35:1079–1088 [CrossRef][PubMed]
    [Google Scholar]
  26. McIntyre JC, Hege MM, Berbari NF. Trafficking of ciliary G protein-coupled receptors. Methods Cell Biol 2016;132:35–54 [CrossRef][PubMed]
    [Google Scholar]
  27. Gaspar M, May JS, Sukla S, Frederico B, Gill MB et al. Murid herpesvirus-4 exploits dendritic cells to infect B cells. PLoS Pathog 2011;7:e1002346 [CrossRef][PubMed]
    [Google Scholar]
  28. Gillet L, Adler H, Stevenson PG. Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection. PLoS One 2007;2:e347 [CrossRef][PubMed]
    [Google Scholar]
  29. Gillet L, Colaco S, Stevenson PG. The murid herpesvirus-4 gH/gL binds to glycosaminoglycans. PLoS One 2008;3:e1669 [CrossRef][PubMed]
    [Google Scholar]
  30. de Lima BD, May JS, Stevenson PG. Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 2004;78:5103–5112 [CrossRef][PubMed]
    [Google Scholar]
  31. Gillet L, May JS, Stevenson PG. In vivo importance of heparan sulfate-binding glycoproteins for murid herpesvirus-4 infection. J Gen Virol 2009;90:602–613 [CrossRef][PubMed]
    [Google Scholar]
  32. Gill MB, Gillet L, Colaco S, May JS, de Lima BD et al. Murine gammaherpesvirus-68 glycoprotein H-glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 2006;87:1465–1475 [CrossRef][PubMed]
    [Google Scholar]
  33. Glauser DL, Kratz AS, Gillet L, Stevenson PG. A mechanistic basis for potent, glycoprotein B-directed gammaherpesvirus neutralization. J Gen Virol 2011;92:2020–2033 [CrossRef][PubMed]
    [Google Scholar]
  34. Glauser DL, Gillet L, Stevenson PG. Virion endocytosis is a major target for murid herpesvirus-4 neutralization. J Gen Virol 2012;93:1316–1327 [CrossRef][PubMed]
    [Google Scholar]
  35. Gillet L, May JS, Colaco S, Stevenson PG. The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS One 2007;2:e705 [CrossRef][PubMed]
    [Google Scholar]
  36. Gillet L, May JS, Stevenson PG. Post-exposure vaccination improves gammaherpesvirus neutralization. PLoS One 2007;2:e899 [CrossRef][PubMed]
    [Google Scholar]
  37. Rosa GT, Gillet L, Smith CM, de Lima BD, Stevenson PG. IgG fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2007;2:e560 [CrossRef][PubMed]
    [Google Scholar]
  38. Vukovic J, Blomster LV, Chinnery HR, Weninger W, Jung S et al. Bone marrow chimeric mice reveal a role for CX3CR1 in maintenance of the monocyte-derived cell population in the olfactory neuroepithelium. J Leukoc Biol 2010;88:645–654 [CrossRef][PubMed]
    [Google Scholar]
  39. Niess JH, Brand S, Gu X, Landsman L, Jung S et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005;307:254–258 [CrossRef][PubMed]
    [Google Scholar]
  40. Ladel S, Flamm J, Zadeh AS, Filzwieser D, Walter JC et al. Allogenic Fc Domain-Facilitated Uptake of IgG in Nasal Lamina Propria: Friend or Foe for Intranasal CNS Delivery?. Pharmaceutics 2018;10:E107107 [CrossRef][PubMed]
    [Google Scholar]
  41. Smith CM, Gill MB, May JS, Stevenson PG. Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells. PLoS One 2007;2:e1048 [CrossRef][PubMed]
    [Google Scholar]
  42. Tan CS, Frederico B, Stevenson PG. Herpesvirus delivery to the murine respiratory tract. J Virol Methods 2014;206:105–114 [CrossRef][PubMed]
    [Google Scholar]
  43. Zeippen C, Javaux J, Xiao X, Ledecq M, Mast J et al. The major envelope glycoprotein of murid Herpesvirus 4 Promotes Sexual Transmission. J Virol 2017;91:e00235 [CrossRef][PubMed]
    [Google Scholar]
  44. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001;19:275–290 [CrossRef][PubMed]
    [Google Scholar]
  45. Tan CS, Stevenson PG. B cell response to herpesvirus infection of the olfactory neuroepithelium. J Virol 2014;88:14030–14039 [CrossRef][PubMed]
    [Google Scholar]
  46. Mellert TK, Getchell ML, Sparks L, Getchell TV. Characterization of the immune barrier in human olfactory mucosa. Otolaryngol Head Neck Surg 1992;106:181–188[PubMed]
    [Google Scholar]
  47. Wright DE, Colaco S, Colaco C, Stevenson PG. Antibody limits in vivo murid herpesvirus-4 replication by IgG Fc receptor-dependent functions. J Gen Virol 2009;90:2592–2603 [CrossRef][PubMed]
    [Google Scholar]
  48. May JS, Stevenson PG. Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization. J Gen Virol 2010;91:2542–2552 [CrossRef][PubMed]
    [Google Scholar]
  49. Hessell AJ, Hangartner L, Hunter M, Havenith CE, Beurskens FJ et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 2007;449:101–104 [CrossRef][PubMed]
    [Google Scholar]
  50. Nagashunmugam T, Lubinski J, Wang L, Goldstein LT, Weeks BS et al. In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 1998;72:5351–5359[PubMed]
    [Google Scholar]
  51. Corrales-Aguilar E, Hoffmann K, Hengel H. CMV-encoded Fcγ receptors: modulators at the interface of innate and adaptive immunity. Semin Immunopathol 2014;36:627–640 [CrossRef][PubMed]
    [Google Scholar]
  52. Frederico B, Chao B, May JS, Belz GT, Stevenson PG. A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe 2014;15:457–470 [CrossRef][PubMed]
    [Google Scholar]
  53. Simas JP, Efstathiou S. Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 1998;6:276–282 [CrossRef][PubMed]
    [Google Scholar]
  54. Roughan JE, Thorley-Lawson DA. The intersection of Epstein-Barr virus with the germinal center. J Virol 2009;83:3968–3976 [CrossRef][PubMed]
    [Google Scholar]
  55. Babcock GJ, Decker LL, Freeman RB, Thorley-Lawson DA. Epstein-barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 1999;190:567–576 [CrossRef][PubMed]
    [Google Scholar]
  56. Lawler C, de Miranda MP, May J, Wyer O, Simas JP et al. Gammaherpesvirus colonization of the spleen requires lytic replication in B cells. J Virol 2018;92:e02199 [CrossRef][PubMed]
    [Google Scholar]
  57. Stevenson PG, Simas JP, Efstathiou S. Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol 2009;90:2317–2330 [CrossRef][PubMed]
    [Google Scholar]
  58. Stewart JP, Micali N, Usherwood EJ, Bonina L, Nash AA. Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 1999;17:152–157 [CrossRef][PubMed]
    [Google Scholar]
  59. Adler H, Messerle M, Wagner M, Koszinowski UH. Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 2000;74:6964–6974 [CrossRef][PubMed]
    [Google Scholar]
  60. Smith CM, Rosa GT, May JS, Bennett NJ, Mount AM et al. CD4+ T cells specific for a model latency-associated antigen fail to control a gammaherpesvirus in vivo. Eur J Immunol 2006;36:3186–3197 [CrossRef][PubMed]
    [Google Scholar]
  61. Mancini G, Carbonara AO, Heremans JF. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 1965;2:235–254 [CrossRef][PubMed]
    [Google Scholar]
  62. Glauser DL, Milho R, Frederico B, May JS, Kratz AS et al. Glycoprotein B cleavage is important for murid herpesvirus 4 to infect myeloid cells. J Virol 2013;87:10828–10842 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001183
Loading
/content/journal/jgv/10.1099/jgv.0.001183
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error