1887

Abstract

Hepatitis C virus (HCV) infection is known to induce autophagy, but the mechanism of autophagy induced by HCV remains controversial. Here, we investigated the characteristics of autophagy induced by HCV infection. First, to examine the involvement of autophagy-related gene (ATG) proteins in HCV-induced LC3 lipidation, we established ATG5, ATG13 or ATG14 knockout (KO) Huh7.5.1 cell lines and confirmed that the accumulation of lipidated LC3 was induced in an ATG13- and ATG14-independent manner. On the other hand, HCV infectivity was not influenced by deficiencies in these genes. We also confirmed that LC3-positive dots were co-localized with ubiquitinated aggregates, and deficiency of ATG5 or ATG14 enhanced the accumulation of ubiquitinated aggregates compared to that in the restored cells, suggesting that HCV infection induces ATG5- and ATG14-dependent selective autophagy. Moreover, LC3-positive ubiquitinated aggregates accumulated near the site of the replication complex. We further examined autophagy flux in cells replicating HCV RNA using bafilomycin or E64d, and found that the increase of LC3 lipidation by treatment with bafilomycin or E64d was impaired in HCV-replicating cells, suggesting that autophagy flux is inhibited by the progress of HCV infection. Our present study suggests that (1) HCV RNA replication induces selective autophagy and (2) the progress of HCV infection impairs autophagy flux.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001161
2018-10-12
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/12/1643.html?itemId=/content/journal/jgv/10.1099/jgv.0.001161&mimeType=html&fmt=ahah

References

  1. Maasoumy B, Wedemeyer H. Natural history of acute and chronic hepatitis C. Best Pract Res Clin Gastroenterol 2012;26:401–412 [CrossRef][PubMed]
    [Google Scholar]
  2. Lohmann V, Körner F, Koch J, Herian U, Theilmann L et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999;285:110–113 [CrossRef][PubMed]
    [Google Scholar]
  3. Ferraris P, Blanchard E, Roingeard P. Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J Gen Virol 2010;91:2230–2237 [CrossRef][PubMed]
    [Google Scholar]
  4. Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 2012;8:e1003056 [CrossRef][PubMed]
    [Google Scholar]
  5. Pawlotsky JM. New hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology 2014;146:1176–1192 [CrossRef][PubMed]
    [Google Scholar]
  6. Sarrazin C, Zeuzem S. Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology 2010;138:447–462 [CrossRef][PubMed]
    [Google Scholar]
  7. Powdrill MH, Tchesnokov EP, Kozak RA, Russell RS, Martin R et al. Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc Natl Acad Sci USA 2011;108:20509–20513 [CrossRef][PubMed]
    [Google Scholar]
  8. Mizushima N. Autophagy: process and function. Genes Dev 2007;21:2861–2873 [CrossRef][PubMed]
    [Google Scholar]
  9. Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009;335:1–32 [CrossRef][PubMed]
    [Google Scholar]
  10. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003;116:1679–1688 [CrossRef][PubMed]
    [Google Scholar]
  11. Fujita N, Itoh T, Omori H, Fukuda M, Noda T et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 2008;19:2092–2100 [CrossRef][PubMed]
    [Google Scholar]
  12. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004;117:2805–2812 [CrossRef][PubMed]
    [Google Scholar]
  13. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001;152:657–668 [CrossRef][PubMed]
    [Google Scholar]
  14. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011;469:323–335 [CrossRef][PubMed]
    [Google Scholar]
  15. Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 2004;279:10136–10141 [CrossRef][PubMed]
    [Google Scholar]
  16. Jackson WT, Giddings TH, Taylor MP, Mulinyawe S, Rabinovitch M et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 2005;3:e156 [CrossRef][PubMed]
    [Google Scholar]
  17. Wong J, Zhang J, Si X, Gao G, Mao I et al. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 2008;82:9143–9153 [CrossRef][PubMed]
    [Google Scholar]
  18. Ait-Goughoulte M, Kanda T, Meyer K, Ryerse JS, Ray RB et al. Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol 2008;82:2241–2249 [CrossRef][PubMed]
    [Google Scholar]
  19. Sir D, Chen WL, Choi J, Wakita T, Yen TS et al. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 2008;48:1054–1061 [CrossRef][PubMed]
    [Google Scholar]
  20. Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA 2009;106:14046–14051 [CrossRef][PubMed]
    [Google Scholar]
  21. Taguwa S, Kambara H, Fujita N, Noda T, Yoshimori T et al. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J Virol 2011;85:13185–13194 [CrossRef][PubMed]
    [Google Scholar]
  22. Sir D, Kuo CF, Tian Y, Liu HM, Huang EJ et al. Replication of hepatitis C virus RNA on autophagosomal membranes. J Biol Chem 2012;287:18036–18043 [CrossRef][PubMed]
    [Google Scholar]
  23. Fahmy AM, Labonté P. The autophagy elongation complex (ATG5-12/16L1) positively regulates HCV replication and is required for wild-type membranous web formation. Sci Rep 2017;7:40351 [CrossRef][PubMed]
    [Google Scholar]
  24. Hansen MD, Johnsen IB, Stiberg KA, Sherstova T, Wakita T et al. Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M. Proc Natl Acad Sci USA 2017;114:E3462E3471 [CrossRef][PubMed]
    [Google Scholar]
  25. Tanida I, Fukasawa M, Ueno T, Kominami E, Wakita T et al. Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles. Autophagy 2009;5:937–945 [CrossRef][PubMed]
    [Google Scholar]
  26. Shrivastava S, Raychoudhuri A, Steele R, Ray R, Ray RB. Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes. Hepatology 2011;53:406–414 [CrossRef][PubMed]
    [Google Scholar]
  27. Fukuhara T, Kambara H, Shiokawa M, Ono C, Katoh H et al. Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. J Virol 2012;86:7918–7933 [CrossRef][PubMed]
    [Google Scholar]
  28. Date T, Kato T, Kato J, Takahashi H, Morikawa K et al. Novel cell culture-adapted genotype 2a hepatitis C virus infectious clone. J Virol 2012;86:10805–10820 [CrossRef][PubMed]
    [Google Scholar]
  29. Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating?. Nat Rev Mol Cell Biol 2011;13:7–12 [CrossRef][PubMed]
    [Google Scholar]
  30. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 2007;282:37298–37302 [CrossRef][PubMed]
    [Google Scholar]
  31. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009;20:1981–1991 [CrossRef][PubMed]
    [Google Scholar]
  32. Yuan HX, Russell RC, Guan KL. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 2013;9:1983–1995 [CrossRef][PubMed]
    [Google Scholar]
  33. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005;171:603–614 [CrossRef][PubMed]
    [Google Scholar]
  34. Rogov V, Dötsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 2014;53:167–178 [CrossRef][PubMed]
    [Google Scholar]
  35. Jones CT, Catanese MT, Law LM, Khetani SR, Syder AJ et al. Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat Biotechnol 2010;28:167–171 [CrossRef][PubMed]
    [Google Scholar]
  36. Guévin C, Manna D, Bélanger C, Konan KV, Mak P et al. Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology 2010;405:1–7 [CrossRef][PubMed]
    [Google Scholar]
  37. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010;140:313–326 [CrossRef][PubMed]
    [Google Scholar]
  38. Felzen V, Hiebel C, Koziollek-Drechsler I, Reißig S, Wolfrum U et al. Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death Dis 2015;6:e1812 [CrossRef][PubMed]
    [Google Scholar]
  39. Correa RJ, Valdes YR, Shepherd TG, Dimattia GE. Beclin-1 expression is retained in high-grade serous ovarian cancer yet is not essential for autophagy induction in vitro. J Ovarian Res 2015;8:52 [CrossRef][PubMed]
    [Google Scholar]
  40. Cao Y, Zhang S, Yuan N, Wang J, Li X et al. Hierarchal Autophagic Divergence of Hematopoietic System. J Biol Chem 2015;290:23050–23063 [CrossRef][PubMed]
    [Google Scholar]
  41. Yordy B, Tal MC, Hayashi K, Arojo O, Iwasaki A. Autophagy and selective deployment of Atg proteins in antiviral defense. Int Immunol 2013;25:1–10 [CrossRef][PubMed]
    [Google Scholar]
  42. Leymarie O, Lepont L, Berlioz-Torrent C. Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle. Viruses 2017;9:E270 [CrossRef][PubMed]
    [Google Scholar]
  43. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005;307:593–596 [CrossRef][PubMed]
    [Google Scholar]
  44. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013;13:722–737 [CrossRef][PubMed]
    [Google Scholar]
  45. Romao S, Gannage M, Münz C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin Cancer Biol 2013;23:391–396 [CrossRef][PubMed]
    [Google Scholar]
  46. Choi Y, Bowman JW, Jung JU. Autophagy during viral infection - a double-edged sword. Nat Rev Microbiol 2018;16:341–354 [CrossRef][PubMed]
    [Google Scholar]
  47. Heaton NS, Randall G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 2010;8:422–432 [CrossRef][PubMed]
    [Google Scholar]
  48. Kim SJ, Syed GH, Siddiqui A. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog 2013;9:e1003285 [CrossRef][PubMed]
    [Google Scholar]
  49. Orvedahl A, Macpherson S, Sumpter R, Tallóczy Z, Zou Z et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 2010;7:115–127 [CrossRef][PubMed]
    [Google Scholar]
  50. Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M et al. Species-specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Rep 2013;14:534–544 [CrossRef][PubMed]
    [Google Scholar]
  51. Ding B, Zhang L, Li Z, Zhong Y, Tang Q et al. The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. Cell Host Microbe 2017;21:e534538–547 [CrossRef][PubMed]
    [Google Scholar]
  52. Birgisdottir ÅB, Lamark T, Johansen T. The LIR motif - crucial for selective autophagy. J Cell Sci 2013;126:3237–3247 [CrossRef][PubMed]
    [Google Scholar]
  53. Chaumorcel M, Souquère S, Pierron G, Codogno P, Esclatine A. Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy 2008;4:46–53 [CrossRef][PubMed]
    [Google Scholar]
  54. Chaumorcel M, Lussignol M, Mouna L, Cavignac Y, Fahie K et al. The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J Virol 2012;86:2571–2584 [CrossRef][PubMed]
    [Google Scholar]
  55. Metz P, Chiramel A, Chatel-Chaix L, Alvisi G, Bankhead P et al. Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62. J Virol 2015;89:8026–8041 [CrossRef][PubMed]
    [Google Scholar]
  56. Corona AK, Saulsbery HM, Corona Velazquez AF, Jackson WT. Enteroviruses Remodel Autophagic Trafficking through Regulation of Host SNARE Proteins to Promote Virus Replication and Cell Exit. Cell Rep 2018;22:3304–3314 [CrossRef][PubMed]
    [Google Scholar]
  57. Mohamud Y, Shi J, Qu J, Poon T, Xue YC et al. Enteroviral Infection Inhibits Autophagic Flux via Disruption of the SNARE Complex to Enhance Viral Replication. Cell Rep 2018;22:3292–3303 [CrossRef][PubMed]
    [Google Scholar]
  58. Mclauchlan J. Lipid droplets and hepatitis C virus infection. Biochim Biophys Acta 2009;1791:552–559 [CrossRef][PubMed]
    [Google Scholar]
  59. Wang L, Tian Y, Ou JH. HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog 2015;11:e1004764 [CrossRef][PubMed]
    [Google Scholar]
  60. Biering SB, Choi J, Halstrom RA, Brown HM, Beatty WL et al. Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases. Cell Host Microbe 2017;22:74–85 [CrossRef][PubMed]
    [Google Scholar]
  61. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003;112:1809–1820 [CrossRef][PubMed]
    [Google Scholar]
  62. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007;9:1142–1151 [CrossRef][PubMed]
    [Google Scholar]
  63. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011;25:795–800 [CrossRef][PubMed]
    [Google Scholar]
  64. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009;137:1062–1075 [CrossRef][PubMed]
    [Google Scholar]
  65. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 2013;51:618–631 [CrossRef][PubMed]
    [Google Scholar]
  66. Masaki T, Suzuki R, Saeed M, Mori K, Matsuda M et al. Production of infectious hepatitis C virus by using RNA polymerase I-mediated transcription. J Virol 2010;84:5824–5835 [CrossRef][PubMed]
    [Google Scholar]
  67. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 2006;224:213–232 [CrossRef][PubMed]
    [Google Scholar]
  68. Rieder CL, Bowser SS. Correlative immunofluorescence and electron microscopy on the same section of epon-embedded material. J Histochem Cytochem 1985;33:165–171 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001161
Loading
/content/journal/jgv/10.1099/jgv.0.001161
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error