1887

Abstract

There are several RNA interference (RNAi) pathways in insects. The small interfering RNA pathway is considered to be the main antiviral mechanism of the innate immune system; however, virus-specific P-element-induced Wimpy testis gene (PIWI)-interacting RNAs (vpiRNAs) have also been described, especially in mosquitoes. Understanding the antiviral potential of the RNAi pathways is important, given that many human and animal pathogens are transmitted by mosquitoes, such as Zika virus, dengue virus and chikungunya virus. In recent years, significant progress has been made to characterize the piRNA pathway in mosquitoes (including the possible antiviral activity) and to determine the differences between mosquitoes and the model organism Drosophila melanogaster. The new findings, especially regarding vpiRNA in mosquitoes, as well as important questions that need to be tackled in the future, are discussed in this review.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001157
2018-10-29
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/12/1551.html?itemId=/content/journal/jgv/10.1099/jgv.0.001157&mimeType=html&fmt=ahah

References

  1. Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: I. Annu Rev Biochem 2015;84:405–433 [CrossRef][PubMed]
    [Google Scholar]
  2. Seto AG, Kingston RE, Lau NC. The coming of age for Piwi proteins. Mol Cell 2007;26:603–609 [CrossRef][PubMed]
    [Google Scholar]
  3. Wang XH, Aliyari R, Li WX, Li HW, Kim K et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 2006;312:452–454 [CrossRef][PubMed]
    [Google Scholar]
  4. Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 2006;7:590–597 [CrossRef][PubMed]
    [Google Scholar]
  5. van Rij RP, Saleh MC, Berry B, Foo C, Houk A et al. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 2006;20:2985–2995 [CrossRef][PubMed]
    [Google Scholar]
  6. Blair CD, Olson KE. The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2015;7:820–843 [CrossRef][PubMed]
    [Google Scholar]
  7. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 2006;313:320–324 [CrossRef][PubMed]
    [Google Scholar]
  8. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007;128:1089–1103 [CrossRef][PubMed]
    [Google Scholar]
  9. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y et al. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science 2007;315:1587–1590 [CrossRef][PubMed]
    [Google Scholar]
  10. Cox DN, Chao A, Baker J, Chang L, Qiao D et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 1998;12:3715–3727 [CrossRef][PubMed]
    [Google Scholar]
  11. Li C, Vagin VV, Lee S, Xu J, Ma S et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 2009;137:509–521 [CrossRef][PubMed]
    [Google Scholar]
  12. Lin H, Spradling AC. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 1997;124:2463–2476[PubMed]
    [Google Scholar]
  13. Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun 2017;8:1411 [CrossRef][PubMed]
    [Google Scholar]
  14. Huang X, Fejes Tóth K, Aravin AA. piRNA Biogenesis in Drosophila melanogaster. Trends Genet 2017;33:882–894 [CrossRef][PubMed]
    [Google Scholar]
  15. Mohn F, Handler D, Brennecke J, Noncoding RNA. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 2015;348:812–817 [CrossRef][PubMed]
    [Google Scholar]
  16. Pane A, Wehr K, Schüpbach T. zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev Cell 2007;12:851–862 [CrossRef][PubMed]
    [Google Scholar]
  17. Han BW, Wang W, Li C, Weng Z, Zamore PD. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 2015;348:817–821 [CrossRef][PubMed]
    [Google Scholar]
  18. Kawaoka S, Izumi N, Katsuma S, Tomari Y. 3' end formation of PIWI-interacting RNAs in vitro. Mol Cell 2011;43:1015–1022 [CrossRef][PubMed]
    [Google Scholar]
  19. Feltzin VL, Khaladkar M, Abe M, Parisi M, Hendriks GJ et al. The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila. Aging Cell 2015;14:443–452 [CrossRef][PubMed]
    [Google Scholar]
  20. Horwich MD, Li C, Matranga C, Vagin V, Farley G et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 2007;17:1265–1272 [CrossRef][PubMed]
    [Google Scholar]
  21. Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H et al. Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. Genes Dev 2007;21:1603–1608 [CrossRef][PubMed]
    [Google Scholar]
  22. Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 2012;151:964–980 [CrossRef][PubMed]
    [Google Scholar]
  23. Dönertas D, Sienski G, Brennecke J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev 2013;27:1693–1705 [CrossRef][PubMed]
    [Google Scholar]
  24. Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev 2013;27:390–399 [CrossRef][PubMed]
    [Google Scholar]
  25. Ohtani H, Iwasaki YW, Shibuya A, Siomi H, Siomi MC et al. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev 2013;27:1656–1661 [CrossRef][PubMed]
    [Google Scholar]
  26. Sienski G, Batki J, Senti KA, Dönertas D, Tirian L et al. Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev 2015;29:2258–2271 [CrossRef][PubMed]
    [Google Scholar]
  27. Yu Y, Gu J, Jin Y, Luo Y, Preall JB et al. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 2015;350:339–342 [CrossRef][PubMed]
    [Google Scholar]
  28. Lim AK, Kai T, Organelle Ugerm-Line. nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci USA 2007;104:6714–6719
    [Google Scholar]
  29. Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 2007;318:761–764 [CrossRef][PubMed]
    [Google Scholar]
  30. Campbell CL, Black WC, Hess AM, Foy BD. Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genomics 2008;9:425 [CrossRef][PubMed]
    [Google Scholar]
  31. Lewis SH, Salmela H, Obbard DJ. Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine. Genome Biol Evol 2016;8:507–518 [CrossRef][PubMed]
    [Google Scholar]
  32. Wang Y, Jin B, Liu P, Li J, Chen X et al. piRNA Profiling of Dengue Virus Type 2-Infected Asian Tiger Mosquito and Midgut Tissues. Viruses 2018;10:213 DOI Epub ahead of print 22 April 2018 [CrossRef][PubMed]
    [Google Scholar]
  33. Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 2012;8:e1002470 [CrossRef][PubMed]
    [Google Scholar]
  34. Akbari OS, Antoshechkin I, Amrhein H, Williams B, Diloreto R et al. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3 2013;3:1493–1509 [CrossRef][PubMed]
    [Google Scholar]
  35. Czech B, Hannon GJ. One loop to rule them all: The ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci 2016;41:324–337 [CrossRef][PubMed]
    [Google Scholar]
  36. Lewis SH, Quarles KA, Yang Y, Tanguy M, Frézal L et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol 2018;2:174–181 [CrossRef][PubMed]
    [Google Scholar]
  37. Arensburger P, Hice RH, Wright JA, Craig NL, Atkinson PW. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs. BMC Genomics 2011;12:606 [CrossRef][PubMed]
    [Google Scholar]
  38. Girardi E, Miesen P, Pennings B, Frangeul L, Saleh MC et al. Histone-derived piRNA biogenesis depends on the ping-pong partners Piwi5 and Ago3 in Aedes aegypti. Nucleic Acids Res 2017;45:gkw1368 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhou X, Liao Z, Jia Q, Cheng L, Li F. Identification and characterization of Piwi subfamily in insects. Biochem Biophys Res Commun 2007;362:126–131 [CrossRef][PubMed]
    [Google Scholar]
  40. Wu Q, Luo Y, Lu R, Lau N, Lai EC et al. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci USA 2010;107:1606–1611 [CrossRef][PubMed]
    [Google Scholar]
  41. Jose J, Snyder JE, Kuhn RJ. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 2009;4:837–856 [CrossRef][PubMed]
    [Google Scholar]
  42. Macias V, Coleman J, Bonizzoni M, James AA. piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi. Insect Mol Biol 2014;23:579–586 [CrossRef][PubMed]
    [Google Scholar]
  43. Hoa NT, Keene KM, Olson KE, Zheng L. Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem Mol Biol 2003;33:949–957 [CrossRef][PubMed]
    [Google Scholar]
  44. Petit M, Mongelli V, Frangeul L, Blanc H, Jiggins F et al. piRNA pathway is not required for antiviral defense in Drosophila melanogaster. Proc Natl Acad Sci USA 2016;113:E4218E4227 [CrossRef][PubMed]
    [Google Scholar]
  45. Chotkowski HL, Ciota AT, Jia Y, Puig-Basagoiti F, Kramer LD et al. West Nile virus infection of Drosophila melanogaster induces a protective RNAi response. Virology 2008;377:197–206 [CrossRef][PubMed]
    [Google Scholar]
  46. Zambon RA, Vakharia VN, Wu LP, Lp W. RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol 2006;8:880–889 [CrossRef][PubMed]
    [Google Scholar]
  47. Chandler CH, Chari S, Dworkin I. Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution. Trends Genet 2013;29:358–366 [CrossRef][PubMed]
    [Google Scholar]
  48. Vodovar N, Bronkhorst AW, van Cleef KW, Miesen P, Blanc H et al. Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One 2012;7:e30861 [CrossRef][PubMed]
    [Google Scholar]
  49. Miesen P, Girardi E, van Rij RP. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res 2015;43:6545–6556 [CrossRef][PubMed]
    [Google Scholar]
  50. Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA et al. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 2010;4:e856 [CrossRef][PubMed]
    [Google Scholar]
  51. Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V et al. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat Commun 2016;7:12410 [CrossRef][PubMed]
    [Google Scholar]
  52. Schnettler E, Donald CL, Human S, Watson M, Siu RW, Rwc S et al. Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol 2013;94:1680–1689 [CrossRef][PubMed]
    [Google Scholar]
  53. Scott JC, Brackney DE, Campbell CL, Bondu-Hawkins V, Hjelle B et al. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl Trop Dis 2010;4:e848 [CrossRef][PubMed]
    [Google Scholar]
  54. Miesen P, Ivens A, Buck AH, van Rij RP. Small RNA profiling in dengue virus 2-infected aedes mosquito cells reveals viral piRNAs and novel host miRNAs. PLoS Negl Trop Dis 2016;10:e0004452 [CrossRef][PubMed]
    [Google Scholar]
  55. Varjak M, Donald CL, Mottram TJ, Sreenu VB, Merits A et al. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Negl Trop Dis 2017;11:e0006010 [CrossRef][PubMed]
    [Google Scholar]
  56. Dietrich I, Shi X, McFarlane M, Watson M, Blomström AL et al. The Antiviral RNAi Response in Vector and Non-vector Cells against Orthobunyaviruses. PLoS Negl Trop Dis 2017;11:e0005272 [CrossRef][PubMed]
    [Google Scholar]
  57. Schnettler E, Ratinier M, Watson M, Shaw AE, McFarlane M et al. RNA interference targets arbovirus replication in Culicoides cells. J Virol 2013;87:2441–2454 [CrossRef][PubMed]
    [Google Scholar]
  58. Dietrich I, Jansen S, Fall G, Lorenzen S, Rudolf M et al. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems. mSphere. 2017;2
  59. Léger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z et al. Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol 2013;87:1631–1648 [CrossRef][PubMed]
    [Google Scholar]
  60. Miesen P, Joosten J, van Rij RP. PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes. PLoS Pathog 2016;12:e1006017 [CrossRef][PubMed]
    [Google Scholar]
  61. Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE et al. Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol 2011;11:45 [CrossRef][PubMed]
    [Google Scholar]
  62. Saldaña MA, Etebari K, Hart CE, Widen SG, Wood TG et al. Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes. PLoS Negl Trop Dis 2017;11:e0005760 [CrossRef][PubMed]
    [Google Scholar]
  63. Lee M, Etebari K, Hall-Mendelin S, van den Hurk AF, Hobson-Peters J et al. Understanding the role of microRNAs in the interaction of Aedes aegypti mosquitoes with an insect-specific flavivirus. J Gen Virol 2017;98:1892–1903 [CrossRef][PubMed]
    [Google Scholar]
  64. Aguiar ER, Olmo RP, Paro S, Ferreira FV, de Faria IJ et al. Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Res 2015;43:6191–6206 [CrossRef][PubMed]
    [Google Scholar]
  65. Carissimo G, Pondeville E, McFarlane M, Dietrich I, Mitri C et al. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc Natl Acad Sci USA 2015;112:E176E185 [CrossRef][PubMed]
    [Google Scholar]
  66. Fros JJ, Miesen P, Vogels CB, Gaibani P, Sambri V et al. Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health 2015;1:31–36 [CrossRef][PubMed]
    [Google Scholar]
  67. Siu RW, Fragkoudis R, Simmonds P, Donald CL, Chase-Topping ME et al. Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs. J Virol 2011;85:2907–2917 [CrossRef][PubMed]
    [Google Scholar]
  68. Varjak M, Dietrich I, Sreenu VB, Till BE, Merits A et al. Spindle-E Acts Antivirally Against Alphaviruses in Mosquito Cells. Viruses 2018;10:88 [CrossRef][PubMed]
    [Google Scholar]
  69. Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC et al. Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. mSphere 2017;2: [CrossRef][PubMed]
    [Google Scholar]
  70. Samuel GH, Wiley MR, Badawi A, Adelman ZN, Myles KM. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc Natl Acad Sci USA 2016;113:13863–13868 [CrossRef][PubMed]
    [Google Scholar]
  71. Zhang G, Etebari K, Asgari S. Wolbachia suppresses cell fusing agent virus in mosquito cells. J Gen Virol 2016;97:3427–3432 [CrossRef][PubMed]
    [Google Scholar]
  72. Schnettler E, Sreenu VB, Mottram T, McFarlane M. Wolbachia restricts insect-specific flavivirus infection in Aedes aegypti cells. J Gen Virol 2016;97:3024–3029 [CrossRef][PubMed]
    [Google Scholar]
  73. Eifan S, Schnettler E, Dietrich I, Kohl A, Blomström AL. Non-structural proteins of arthropod-borne bunyaviruses: roles and functions. Viruses 2013;5:2447–2468 [CrossRef][PubMed]
    [Google Scholar]
  74. Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD et al. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA 2004;101:17240–17245 [CrossRef][PubMed]
    [Google Scholar]
  75. Lourenço-de-Oliveira R, Marques JT, Sreenu VB, Atyame Nten C, Aguiar E et al. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J Gen Virol 2018;99:258–264 [CrossRef][PubMed]
    [Google Scholar]
  76. Roundy CM, Azar SR, Brault AC, Ebel GD, Failloux AB et al. Lack of evidence for Zika virus transmission by Culex mosquitoes. Emerg Microbes Infect 2017;6:e90 [CrossRef][PubMed]
    [Google Scholar]
  77. Aiewsakun P, Katzourakis A. Endogenous viruses: Connecting recent and ancient viral evolution. Virology 2015;479-480:26–26–37 [CrossRef][PubMed]
    [Google Scholar]
  78. Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet 2010;6:e1001191 [CrossRef][PubMed]
    [Google Scholar]
  79. Nag DK, Brecher M, Kramer LD. DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology 2016;498:164–171 [CrossRef][PubMed]
    [Google Scholar]
  80. Nag DK, Kramer LD. Patchy DNA forms of the Zika virus RNA genome are generated following infection in mosquito cell cultures and in mosquitoes. J Gen Virol 2017;98:2731–2737 [CrossRef][PubMed]
    [Google Scholar]
  81. Poirier EZ, Goic B, Tomé-Poderti L, Frangeul L, Boussier J et al. Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Cell Host Microbe 2018;23:353–365 [CrossRef][PubMed]
    [Google Scholar]
  82. Whitfield ZJ, Dolan PT, Kunitomi M, Tassetto M, Seetin MG et al. The Diversity, Structure, and Function of Heritable Adaptive Immunity Sequences in the Aedes aegypti Genome. Curr Biol 2017;27:3511–3519 [CrossRef][PubMed]
    [Google Scholar]
  83. Palatini U, Miesen P, Carballar-Lejarazu R, Ometto L, Rizzo E et al. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics 2017;18:512 [CrossRef][PubMed]
    [Google Scholar]
  84. Crochu S, Cook S, Attoui H, Charrel RN, de Chesse R et al. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol 2004;85:1971–1980 [CrossRef][PubMed]
    [Google Scholar]
  85. Cook S, Bennett SN, Holmes EC, de Chesse R, Moureau G et al. Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 2006;87:735–748 [CrossRef][PubMed]
    [Google Scholar]
  86. Suzuki Y, Frangeul L, Dickson LB, Blanc H, Verdier Y et al. Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes. J Virol 2017;91: [CrossRef][PubMed]
    [Google Scholar]
  87. Fort P, Albertini A, van-Hua A, Berthomieu A, Roche S et al. Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality. Mol Biol Evol 2012;29:381–390 [CrossRef][PubMed]
    [Google Scholar]
  88. Varble A, Benitez AA, Schmid S, Sachs D, Shim JV et al. An in vivo RNAi screening approach to identify host determinants of virus replication. Cell Host Microbe 2013;14:346–356 [CrossRef][PubMed]
    [Google Scholar]
  89. Ye W, Liu X, Guo J, Sun X, Sun Y et al. piRNA-3878 targets P450 (CpCYP307B1) to regulate pyrethroid resistance in Culex pipiens pallens. Parasitol Res 2017;116:2489–2497 [CrossRef][PubMed]
    [Google Scholar]
  90. Guo J, Ye W, Liu X, Sun X, Guo Q et al. piRNA-3312: A Putative Role for Pyrethroid Resistance in Culex pipiens pallens (Diptera: Culicidae). J Med Entomol 2017;54:1013–1018 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001157
Loading
/content/journal/jgv/10.1099/jgv.0.001157
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error