1887

Abstract

Arboviruses are viral pathogens that are transmitted from an animal reservoir to humans via an arthropod vector. These viruses result in a large burden of disease worldwide and show a propensity for establishing new endemic foci in geographically distant regions. The potential impact of arboviruses in Central Asia is unclear due to the scarcity of reports available in English; however, the collation of available data shows that numerous important human viruses are circulating in the region. Pathogens such as Crimean–Congo haemorrhagic fever virus, tick-borne encephalitis virus and Tahyna virus are likely to be responsible for numerous cases of human disease in Central Asia on an annual basis. There is evidence that pathogens such as West Nile virus and sandfly fever virus have resulted in sporadic outbreaks of human disease across the region; these events appear to be triggered by a significant change in the abundance of local arthropod vectors or events altering the contact between humans and local arthropod populations, such as conflict or natural disasters. In addition, there are several under-researched arboviruses that could result in a significant disease, including Karshi virus, Issyk-Kul virus and Syr-Darya Valley fever virus. This review provides the first comprehensive assessment of emerging arboviruses in Central Asia. Further research is required to assess the full impact of arboviruses on human health in the region and to monitor potential spread. Up-to-date information regarding arbovirus endemicity will allow for the development and distribution of rapid diagnostics, the implementation of bite-prevention strategies in at-risk areas and improved travel recommendations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001125
2018-08-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/9/1172.html?itemId=/content/journal/jgv/10.1099/jgv.0.001125&mimeType=html&fmt=ahah

References

  1. Nichol ST, Arikawa J, Kawaoka Y. Emerging viral diseases. Proc Natl Acad Sci USA 2000; 97:12411–12412 [View Article][PubMed]
    [Google Scholar]
  2. Woolhouse M, Gaunt E. Ecological origins of novel human pathogens. Crit Rev Microbiol 2007; 33:231–242 [View Article][PubMed]
    [Google Scholar]
  3. Engering A, Hogerwerf L, Slingenbergh J. Pathogen–host–environment interplay and disease emergence. Emerg Microbes Infect 2013; 2:e5 [View Article]
    [Google Scholar]
  4. Wong S, Lau S, Woo P, Yuen K-Y. Bats as a continuing source of emerging infections in humans. Rev Med Virol 2007; 17:67–91 [View Article]
    [Google Scholar]
  5. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol 2010; 84:9733–9748 [View Article][PubMed]
    [Google Scholar]
  6. Rezza G. Chikungunya and West Nile virus outbreaks: what is happening in north-eastern Italy?. Eur J Public Health 2009; 19:236–237 [View Article]
    [Google Scholar]
  7. Papa A, Dalla V, Papadimitriou E, Kartalis GN, Antoniadis A. Emergence of Crimean-Congo haemorrhagic fever in Greece. Clin Microbiol Infect 2010; 16:843–847 [View Article][PubMed]
    [Google Scholar]
  8. Cauchemez S, Ledrans M, Poletto C, Quenel P, de Valk H et al. Local and regional spread of chikungunya fever in the Americas. Euro Surveill 2014; 19:20854 [View Article][PubMed]
    [Google Scholar]
  9. Centers for Disease Control and Prevention (CDC) Outbreak of West Nile-like viral encephalitis-New York, 1999. MMWR Morb Mortal Wkly Rep 1999; 48:845–849[PubMed]
    [Google Scholar]
  10. García Rada A. First outbreak of Crimean-Congo haemorrhagic fever in western Europe kills one man in Spain. BMJ 2016; 354:i4891 [View Article]
    [Google Scholar]
  11. Zanluca C, Melo VC, Mosimann AL, Santos GI, Santos CN et al. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 2015; 110:569–572 [View Article][PubMed]
    [Google Scholar]
  12. Nunes MR, Faria NR, de Vasconcelos JM, Golding N, Kraemer MU et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med 2015; 13:102 [View Article][PubMed]
    [Google Scholar]
  13. Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D et al. Prediction and prevention of the next pandemic zoonosis. The Lancet 2012; 380:1956–1965 [View Article]
    [Google Scholar]
  14. Demikhov VG, Chaitsev VG, Butenko AM, Nedyalkova MS, Morozova TN. California serogroup virus infections in the Ryazan region of the USSR. Am J Trop Med Hyg 1991; 45:371–376 [View Article][PubMed]
    [Google Scholar]
  15. Lvov DK, Kolobukhina LV, Butenko AM, Gromashevsky VL, Skvortsova TM et al. Diseases in Russia caused by California serogroup viruses (CSV). Arbovirus Inf Exch 19941–3
    [Google Scholar]
  16. Putkuri N, Vaheri A, Vapalahti O. Prevalence and protein specificity of human antibodies to Inkoo virus infection. Clin Vaccine Immunol 2007; 14:1555–1562 [View Article][PubMed]
    [Google Scholar]
  17. Hubálek Z. Mosquito-borne viruses in Europe. Parasitol Res 2008; 103:29–43 [View Article]
    [Google Scholar]
  18. Gaidamovich SY. Arboviruses in the USSR and their importance in human pathology. Sborn Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 19785–12
    [Google Scholar]
  19. Pak TP. Etiological structure of arbovirus infections in Tadzhik SSR. Sborn Nauch Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 1982127–129
    [Google Scholar]
  20. Pak TP. Clinical-epidemiological characteriscics of arbovirus infections in Tadzhikistan. Sborn Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 1981101–107
    [Google Scholar]
  21. Pak TP, Kostyukov MA, Daniyarov OA, Kuima AU, Bulychev VP et al. Arbovirus infections in Tadzhikistan. Sbom Tr Last Im Ivanov Akad Med Nauk SSSR 1978; 3:35–40
    [Google Scholar]
  22. Chunikhin SP. Study of ecology of arboviruses in arid regions of Central Asia and some countries of Africa. Inst PolioVirus Entsef Akad Med Nauk SSR 1972; 44:
    [Google Scholar]
  23. Timofeev EM, Shakhgil’dyan IV RSN, Grebenyuk YI, Karas FR. Results of serological examination of human blood sera and domestic animals •with 15 arboviruses in southwestern districts of Osh Oblast in Kirghiz SSR. Sborn Tr Ekol Virus 1973; 1:80–87
    [Google Scholar]
  24. Karimov SK, L’Vov DK, Kiryushchenko TV, Drobishchenko NI, Rogovaya SG et al. Arboviruses in Kazakhstan. Sborn Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 197831–34
    [Google Scholar]
  25. Tesh R, Saidi S, Javadian E, Loh P, Nadim A. Isfahan virus, a new vesiculovirus infecting humans, gerbils, and sandflies in Iran. Am J Trop Med Hyg 1977; 26:299–306 [View Article][PubMed]
    [Google Scholar]
  26. Alkhutova LM, Sadykov VG. New data on ecology of Isfahan virus. Sborn Nauch Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 1982144–147
    [Google Scholar]
  27. Lewis DJ. Phlebotomid sandflies. Bull World Health Organ 1971; 44:535–551[PubMed]
    [Google Scholar]
  28. Lvov DK, Karas FR, Timofeev EM, Tsyrkin YM, Vargina SG et al. Issyk-Kul” virus, a new arbovirus isolated from bats and argas (Carios) vespertilionis (Latr., 1802) in the Kirghiz S.S.R. Archiv für die gesamte Virusforschung 1973; 42:207–209 [View Article]
    [Google Scholar]
  29. Lvov DK. Natural foci of Arboviruses in the USSR. Virology Reviews Harwood Academic; 1987 pp. 153–196
    [Google Scholar]
  30. Vargina SG, Kuchuk LA, Gershtein Vi KFR. Transmission of Issyk Kul virus by Argas vespertilionis ticks in experiment. Sborn Nauch Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 1982123–127
    [Google Scholar]
  31. Kostiukov MA, Bulychev VP, Lapina TF. Experimental infection of Aedes caspius caspius Pall. mosquitoes on dwarf bats, Vespertilio pipistrellus, infected with the Issyk-Kul virus and its subsequent transmission to susceptible animals]. Med Parazitol (Mosk) 1982; 51:78–79
    [Google Scholar]
  32. L’Vov DK, Kostiukov MA, Daniiarov OA, Tukhtaev TM, Sherikov BK. Outbreak of arbovirus infection in the Tadzhik SSR due to the Issyk-Kul virus (Issyk-Kul fever)]. Vopr Virusol 1984; 29:89–92
    [Google Scholar]
  33. Al’khovskiĭ SV, L’Vov DK, Shchelkanov MI, Shchetinin AM, Deriabin PG et al. The taxonomy of the Issyk-Kul virus (ISKV, Bunyaviridae, Nairovirus), the etiologic agent of the Issyk-Kul fever isolated from bats (Vespertilionidae) and ticks Argas (Carios) vespertilionis (Latreille, 1796)]. Vopr Virusol 2013; 58:11–15
    [Google Scholar]
  34. Atkinson B, Marston DA, Ellis RJ, Fooks AR, Hewson R. Complete Genomic Sequence of Issyk-Kul Virus. Genome Announc 2015; 3:e00662-15 [View Article][PubMed]
    [Google Scholar]
  35. Kurbanov MM, Berezina LK, Zakaryan VA, Kiseleva NV, Vatolin VP. Results of serological investigation of human and domestic animal blood sera with 13 arboviruses in the Karakum canal zone and southeastern Turkmen SSR. Sborn Tr Ekol Virus 1974; 2:112–120
    [Google Scholar]
  36. Sidorova GA. Contribution to the question of association between certain arboviruses and vectors. Sborn Nauch Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 198216–22
    [Google Scholar]
  37. Lvov DK. Arboviral zoonoses of Northern Eurasia (Eastern Europe and the Commonwealth of Independent States. Handbook of Zoonoses CRC Press, Inc; 1994 pp. 237–260
    [Google Scholar]
  38. Karimov SK, Drobishchenko NI, Kiryushchenko TV. Isolation of Tamdy virus from Hyalomma asiaticum asiaticum ticks in Kazakh SSR. Shorn Nauch Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 1982151–154
    [Google Scholar]
  39. Lvov DK, Shchelkanov MY, Alkhovsky SV, Deryabin PG. Zoonotic Viruses of Northern Eurasia: Taxonomy and Ecology Academic Press; 2015
    [Google Scholar]
  40. Brinkmann A, Dinçer E, Polat C, Hekimoğlu O, Hacıoğlu S et al. A metagenomic survey identifies Tamdy orthonairovirus as well as divergent phlebo-, rhabdo-, chu- and flavi-like viruses in Anatolia, Turkey. Ticks Tick Borne Dis 2018; 9:1173–1183 [View Article][PubMed]
    [Google Scholar]
  41. Alkhovsky SV, Lvov DK, Shchetinin AM, Deriabin PG, Shchelkanov MY et al. Complete genome coding sequences of Artashat, Burana, Caspiy, Chim, Geran, Tamdy, and Uzun-Agach Viruses (Bunyavirales: Nairoviridae: Orthonairovirus). Genome Announc 2017; 5:e01098-17 [View Article][PubMed]
    [Google Scholar]
  42. Lvov DK, Neronov VM, Gromashevsky VL, Skvortsova TM, Berezina LK et al. "Karshi" virus, a new flavivirus (Togaviridae) isolated from Ornithodoros papillipes (Birula, 1895) ticks in Uzbek S.S.R. Arch Virol 1976; 50:29–36 [View Article][PubMed]
    [Google Scholar]
  43. Turell MJ, Mores CN, Lee JS, Paragas JJ, Shermuhemedova D et al. Experimental transmission of Karshi and Langat (Tick-Borne encephalitis virus complex) viruses by Ornithodoros Ticks (Acari: Argasidae). J Med Entomol 2004; 41:973–977 [View Article]
    [Google Scholar]
  44. Skvortsova TM, Gromashevsky VL, Sidorova GA, Khutoretskaia NV, Aristova VA et al. Results of virological investigation of arthropod vectors in the territory of Turkmenia. Sborn Nauch Tr Inst Virus Im Ivanoysky Acad Med Nauk SSSR 1982139–144
    [Google Scholar]
  45. Hermance ME, Thangamani S. Powassan virus: an emerging arbovirus of public health concern in North America. Vector Borne Zoonotic Dis 2017; 17:453–462 [View Article][PubMed]
    [Google Scholar]
  46. Dobler G. Zoonotic tick-borne flaviviruses. Vet Microbiol 2010; 140:221–228 [View Article]
    [Google Scholar]
  47. Deardorff ER, Nofchissey RA, Cook JA, Hope AG, Tsvetkova A et al. Powassan virus in mammals, Alaska and New Mexico, U.S.A., and Russia, 2004-2007. Emerg Infect Dis 2013; 19:2012–2016 [View Article][PubMed]
    [Google Scholar]
  48. Tkachenko EA, Linev MB, Bashkirtsev VN, Berezin VV, Dzhagurova TK et al. Isolation of Powassan virus from adult mosquitoes Anopheles hyrcanus in Khabarovsk region (from data of expedition in 1975). Dokl Simp Transkont Svyazi Pereletn Ptits Rol V Rasp Arbovirus 1978195–197
    [Google Scholar]
  49. L’Vov DK, Timofeeva AA, Gromashevsky VL, Karas’ FR, Skvortsova TM et al. New viruses isolated in the USSR 1969-1975. Tezisy Konf Vop Med Virus 1975322–324
    [Google Scholar]
  50. Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral Res 2003; 57:129–146 [View Article]
    [Google Scholar]
  51. Charrel RN, Attoui H, Butenko AM, Clegg JC, Deubel V et al. Tick-borne virus diseases of human interest in Europe. Clin Microbiol Infect 2004; 10:1040–1055 [View Article][PubMed]
    [Google Scholar]
  52. Hubálek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol Res 2012; 111:9–36 [View Article]
    [Google Scholar]
  53. Korenberg EI. Comparative ecology and epidemiology of lyme disease and tick-borne encephalitis in the former Soviet Union. Parasitol Today 1994; 10:157–160 [View Article][PubMed]
    [Google Scholar]
  54. Süss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick Borne Dis 2011; 2:2–15 [View Article][PubMed]
    [Google Scholar]
  55. Suss J. Tick-borne encephalitis in Europe and beyond–the epidemiological situation as of 2007. Euro Surveill 2008; 13:18916[PubMed]
    [Google Scholar]
  56. L’Vov DK, Al’khovskiĭ SV, Shchelkanov MI, Deriabin PG, Gitel’man AK et al. Genetic characterisation of Powassan virus (POWV) isolated from Haemophysalis longicornis ticks in Primorye and two strains of Tick-borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus): Alma-Arasan virus (AAV) isolated from Ixodes persulcatus ticks in Kazakhstan and Malyshevo virus isolated from Aedes vexans nipponii mosquitoes in Khabarovsk kray]. Vopr Virusol 2014; 59:18–22
    [Google Scholar]
  57. Karas’ FR. Arboviruses in Kirgizia. Sborn Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 197840–44
    [Google Scholar]
  58. Vargina SG, Steblyanko SN, Karas’ FR, Usmanov RK, Gontar’ IA et al. Investigation of viruses ecologically associated with birds of Chu Valley, Kirgizia. Sborn Tr Ekol Virus 197374–80
    [Google Scholar]
  59. Suranchieya RK, Vargina SG. Clinical-epidemiologic observations in natural tick-borne encephalitis foci in Kirghizia. Frunze Zdr Kirg 198414–17
    [Google Scholar]
  60. Briggs BJ, Atkinson B, Czechowski DM, Larsen PA, Meeks HN et al. Tick-borne encephalitis virus, Kyrgyzstan. Emerg Infect Dis 2011; 17:876–879 [View Article][PubMed]
    [Google Scholar]
  61. Kotel’nikova GM. Susceptibility of some tick species to West Nile virus. Dokl Simp Transkont Svyazi Pereletn Ptits Rol V Rasp Arbovirus 1976236–237
    [Google Scholar]
  62. L’Vov DK. Results of 3 year field investigation by the Department of Ecology of Viruses. Sborn Tr Ekol Virus 19735–12
    [Google Scholar]
  63. Nepesova NM. Serological detection of foci of West Nile Fever in the Turkmen SSR. Novosibirsk 1969
    [Google Scholar]
  64. Lvov DK, Butenko AM, Gromashevsky VL, Larichev VP, Gaidamovich SY et al. Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999. Emerg Infect Dis 2000; 6:373–376 [View Article][PubMed]
    [Google Scholar]
  65. Lvov DK, Butenko AM, Gromashevsky VL, Kovtunov AI, Prilipov AG et al. West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. Arch Virol Suppl 200485–96
    [Google Scholar]
  66. Chumakov MP. A new tick-borne virus disease—Crimean hemorrhagic fever. In Solokov AA, Chumakov MP, Kolachev AA. (editors) Crimean Haemorrhagic Fever. Simferopol Izd Otd Primorsk Armii 1945 pp. 13–43
    [Google Scholar]
  67. Semiatkovskaia ZV, Sidtdykova NK. Clinical aspect of infectious hemorrhagic fever. Klin Med 1950; 28:69–71
    [Google Scholar]
  68. Shapiro SE, Barkagan ZS. On history of hemorrhagic fever in Middle Asia. Vopr Virusol 1960; 5:245–246
    [Google Scholar]
  69. Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 1979; 15:307–417 [View Article][PubMed]
    [Google Scholar]
  70. Nurmakhanov T, Sansyzbaev Y, Atshabar B, Deryabin P, Kazakov S et al. Crimean-Congo haemorrhagic fever virus in Kazakhstan (1948-2013). Int J Infect Dis 2015; 38:19–23 [View Article][PubMed]
    [Google Scholar]
  71. Chumakov MP, Smirnova SE, Tkachenko EA. Antigenic relationships between the Soviet strains of Crimean hemorrhagic fever virus and the Afro-Asian Congo virus strains. In Chumakov MP. (editor) Arboviruses, Mater 16 Nauch Sess Inst Polio Virus Entsef. 1969 pp. 152–154
    [Google Scholar]
  72. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA et al. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 2013; 100:159–189 [View Article][PubMed]
    [Google Scholar]
  73. Knust B, Medetov ZB, Kyraubayev KB, Bumburidi Y, Erickson BR et al. Crimean-Congo hemorrhagic fever, Kazakhstan, 2009–2010. Emerg Infect Dis 2012; 18:643–645 [View Article][PubMed]
    [Google Scholar]
  74. Leshchinskaya EV, Chumakov MP. Comparative study of Crimean hemorrhagic fever in different endemic foci of similar diseases in Central Asia. Sborn Tr Inst Polio Virus Entsef Akad Med Nauk SSSR 1965315–323
    [Google Scholar]
  75. Yashina L et al. Genetic variability of Crimean-Congo haemorrhagic fever virus in Russia and Central Asia. J Gen Virol 2003; 84:1199–1206 [View Article]
    [Google Scholar]
  76. Tishkova FH, Belobrova EA, Valikhodzhaeva M, Atkinson B, Hewson R et al. Crimean-Congo hemorrhagic fever in Tajikistan. Vector Borne Zoonotic Dis 2012; 12:722–726 [View Article][PubMed]
    [Google Scholar]
  77. Atkinson B, Chamberlain J, Jameson LJ, Logue CH, Lewis J et al. Identification and analysis of Crimean-Congo hemorrhagic fever virus from human sera in Tajikistan. Int J Infect Dis 2013; 17:e1031e1037 [View Article][PubMed]
    [Google Scholar]
  78. Karas’ FR, Vargina SG, Osipova NZ, Grebenyuk YI, Steblyanko SN et al. Investigation of arbovirus infection foci in Kirghizia. Sborn Tr Ekol Virus 197469–74
    [Google Scholar]
  79. Smirnova SE, Shankugan D, Neresova NM, Filipenko P I, Mamaev VI et al. Isolation of Crimean henorrhagic fever virus from Hyalomma asiaticum ticks collected in Turkmen SSR, In; Medical virology edited by Chumakov, M.P. Tr Inst Polio Virus Entsef Akad Med Nauk SSSR 1974; 22:176–179
    [Google Scholar]
  80. Tsirkin YM, Karas FR, Timofeev EM, L’Vov DK, Gromashevsky VL et al. Isolation of Crimean hemorrhagic fever virus (CHF) from Hyalomma plumbeum ticks in Kirgizia. Mater Simp Itogi 6 Simp Izuch Virus Ekol Svyazan Ptits 197298–102
    [Google Scholar]
  81. Alkan C, Bichaud L, de Lamballerie X, Alten B, Gould EA et al. Sandfly-borne phleboviruses of Eurasia and Africa: epidemiology, genetic diversity, geographic range, control measures. Antiviral Res 2013; 100:54–74 [View Article][PubMed]
    [Google Scholar]
  82. Palacios G, Tesh RB, Savji N, Travassos da Rosa APA, Guzman H et al. Characterization of the Sandfly fever Naples species complex and description of a new Karimabad species complex (genus Phlebovirus, family Bunyaviridae). J Gen Virol 2014; 95:292–300 [View Article]
    [Google Scholar]
  83. Bartels S, Boni L, Kretzschmar HA, Heckmann JG. Lethal encephalitis caused by the Toscana virus in an elderly patient. J Neurol 2012; 259:175–177 [View Article]
    [Google Scholar]
  84. Gaidamovich SY, Khutoretskaia NV, Asyamov YV, Tsyupa Vi MEE. Sandfly fever in Central Asia and Afghanistan. Arch Virol Suppl 1990; 1:287–293
    [Google Scholar]
  85. Gaidamovich SI, Obukhova VR, Sveshnikova NA, Cherednichenko IN, Kostiukov MA. [Natural foci of viruses borne by Phlebotomus papatasi in the USSR according to a serologic study of the population]. Vopr Virusol 1978556–560[PubMed]
    [Google Scholar]
  86. Tesh RB, Saidi S, Gajdamovic SJ, Rodhain F, Vesenjak-Hirjan J. Serological studies on the epidemiology of sandfly fever in the Old World. Bull World Health Organ 1976; 54:663–674
    [Google Scholar]
  87. Karimov SK, Lvov DK, Kiryushchenko TV. Syrdaria Valley fever, a new virus disease in Kazakhstan. Arch Virol Suppl 1990; 1:345
    [Google Scholar]
  88. L’Vov DK, Karimov SK, Kiryushchenko TV, Chun-Syun F, Skvortsova TM et al. Isolation of the virus of Syr-Darya Valley fever. Vopr Virusol 1984; 29:553–558
    [Google Scholar]
  89. L’Vov DK, Al’khovskiĭ SV, Shchelkanov MI, Shchetinin AM, Deriabin PG et al. Genetic characterization of the Syr-Darya valley fever virus (SDVFV) (Picornaviridae, Cardiovirus) isolated from the blood of the patients and ticks Hyalomma as. asiaticum (Hyalomminae), Dermacentor daghestanicus (Rhipicephalinae) (Ixodidae) and Ornithodoros coniceps (Argasidae) in Kazakhstan and Turkmenistan]. Vopr Virusol 2014; 59:15–19
    [Google Scholar]
  90. Laine M, Luukkainen R, Toivanen A. Sindbis viruses and other alphaviruses as cause of human arthritic disease. J Intern Med 2004; 256:457–471 [View Article]
    [Google Scholar]
  91. Gylfe Å, Ribers Å, Forsman O, Bucht G, Alenius GM et al. Mosquitoborne Sindbis virus infection and long-term illness. Emerg Infect Dis 2018; 24:1141–1142 [View Article][PubMed]
    [Google Scholar]
  92. Lundström JO. Mosquito-borne viruses in western Europe: a review. J Vector Ecol J Soc Vector Ecol 1999; 24:1–39
    [Google Scholar]
  93. Calisher CH, Goodpasture HC. Human infection with Bhanja virus. Am J Trop Med Hyg 1975; 24:1040–1042 [View Article][PubMed]
    [Google Scholar]
  94. Voinov IN, Rytik PG, Grigor’ev AL, Samoilova TI, Parnyuk-Podol’skaya VA. Study of ecological circulation cycles of Tyuleniy virus. Sborn Nauch Tr Inst Virus Im Ivanov Akad Med Nauk SSSR 198278–82
    [Google Scholar]
  95. Buttigieg KR, Dowall SD, Findlay-Wilson S, Miloszewska A, Rayner E et al. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLoS One 2014; 9:e91516 [View Article][PubMed]
    [Google Scholar]
  96. Ulbert S, Magnusson SE. Technologies for the development of West Nile virus vaccines. Future Microbiol 2014; 9:1221–1232 [View Article]
    [Google Scholar]
  97. Atkinson B, Chamberlain J, Logue CH, Cook N, Bruce C et al. Development of a real-time RT-PCR assay for the detection of Crimean-Congo hemorrhagic fever virus. Vector Borne Zoonotic Dis 2012; 12:786–793 [View Article][PubMed]
    [Google Scholar]
  98. Wölfel R, Paweska JT, Petersen N, Grobbelaar AA, Leman PA et al. Virus detection and monitoring of viral load in Crimean-Congo hemorrhagic fever virus patients. Emerg Infect Dis 2007; 13:1097–1100 [View Article][PubMed]
    [Google Scholar]
  99. Garrison AR, Alakbarova S, Kulesh DA, Shezmukhamedova D, Khodjaev S et al. Development of a TaqMan minor groove binding protein assay for the detection and quantification of Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg 2007; 77:514–520
    [Google Scholar]
  100. Linke S, Ellerbrok H, Niedrig M, Nitsche A, Pauli G. Detection of West Nile virus lineages 1 and 2 by real-time PCR. J Virol Methods 2007; 146:355–358 [View Article]
    [Google Scholar]
  101. Hadfield TL, Turell M, Dempsey MP, David J, Park EJ. Detection of West Nile virus in mosquitoes by RT-PCR. Mol Cell Probes 2001; 15:147–150 [View Article]
    [Google Scholar]
  102. Schwaiger M, Cassinotti P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J Clin Virol 2003; 27:136–145 [View Article][PubMed]
    [Google Scholar]
  103. ENVID 2016; Commercial Diagnostic Tests Available. www.enivd.de/test_commercial.htm
  104. Jöst H, Bialonski A, Storch V, Günther S, Becker N et al. Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany. J Clin Microbiol 2010; 48:1900–1903 [View Article][PubMed]
    [Google Scholar]
  105. Carhan A, Uyar Y, Ozkaya E, Ertek M, Dobler G et al. Characterization of a sandfly fever Sicilian virus isolated during a sandfly fever epidemic in Turkey. J Clin Virol 2010; 48:264–269 [View Article][PubMed]
    [Google Scholar]
  106. Weidmann M, Sanchez-Seco MP, Sall AA, Ly PO, Thiongane Y et al. Rapid detection of important human pathogenic Phleboviruses. J Clin Virol 2008; 41:138–142 [View Article][PubMed]
    [Google Scholar]
  107. Lambert AJ, Lanciotti RS. Consensus amplification and novel multiplex sequencing method for S segment species identification of 47 viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus genera of the family Bunyaviridae. J Clin Microbiol 2009; 47:2398–2404 [View Article][PubMed]
    [Google Scholar]
  108. Weidmann M, Rudaz V, Nunes MR, Vasconcelos PF, Hufert FT. Rapid detection of human pathogenic orthobunyaviruses. J Clin Microbiol 2003; 41:3299–3305 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.001125
Loading
/content/journal/jgv/10.1099/jgv.0.001125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error