1887

Abstract

The Argentine ant (Linepithema humile) is a highly invasive pest, yet very little is known about its viruses. We analysed individual RNA-sequencing data from 48 Argentine ant queens to identify and characterisze their viruses. We discovered eight complete RNA virus genomes – all from different virus families – and one putative partial entomopoxvirus genome. Seven of the nine virus sequences were found from ant samples spanning 7 years, suggesting that these viruses may cause long-term infections within the super-colony. Although all nine viruses successfully infect Argentine ants, they have very different characteristics, such as genome organization, prevalence, loads, activation frequencies and rates of evolution. The eight RNA viruses constituted in total 23 different virus combinations which, based on statistical analysis, were non-random, suggesting that virus compatibility is a factor in infections. We also searched for virus sequences from New Zealand and Californian Argentine ant RNA-sequencing data and discovered that many of the viruses are found on different continents, yet some viruses are prevalent only in certain colonies. The viral loads described here most probably present a normal asymptomatic level of infection; nevertheless, detailed knowledge of Argentine ant viruses may enable the design of viral biocontrol methods against this pest.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001104
2018-06-25
2019-08-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/8/1129.html?itemId=/content/journal/jgv/10.1099/jgv.0.001104&mimeType=html&fmt=ahah

References

  1. Suarez AV, Holway DA, Case TJ. Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 2001;98:1095–1100 [CrossRef][PubMed]
    [Google Scholar]
  2. Wetterer JK, Wild AL, Suarez AV, Roura-Pascual N, Espadaler X. Worldwide spread of the Argentine ant, Linepithema humile (Hymenoptera: Formicidae). Myrmecological News 2009;12:187–194
    [Google Scholar]
  3. Lowe S, Browne M, Boudjelas S, de Poorter M. 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. Invasive Species Spec Gr a Spec Gr Species Surviv Comm World Conserv Union 2000;12:
    [Google Scholar]
  4. Pedersen JS, Krieger MJ, Vogel V, Giraud T, Keller L. Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 2006;60:782–791[PubMed]
    [Google Scholar]
  5. Chapman RE, Bourke AFG. The influence of sociality on the conservation biology of social insects. Ecol Lett 2001;4:650–662 [CrossRef]
    [Google Scholar]
  6. Giraud T, Pedersen JS, Keller L. Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci USA 2002;99:6075–6079 [CrossRef][PubMed]
    [Google Scholar]
  7. Suarez AV, Tsutsui ND. The evolutionary consequences of biological invasions. Mol Ecol 2008;17:351–360 [CrossRef][PubMed]
    [Google Scholar]
  8. Vogel V, Pedersen JS, D'Ettorre P, Lehmann L, Keller L. Dynamics and genetic structure of Argentine ant supercolonies in their native range. Evolution 2009;63:1627–1639 [CrossRef][PubMed]
    [Google Scholar]
  9. Cooling M, Hartley S, Sim DA, Lester PJ. The widespread collapse of an invasive species: Argentine ants (Linepithema humile) in New Zealand. Biol Lett 2012;8:430–433 [CrossRef][PubMed]
    [Google Scholar]
  10. Lester PJ, Gruber MAM. Booms, busts and population collapses in invasive ants. Biol Invasions 2016;18:3091–3101 [CrossRef]
    [Google Scholar]
  11. Valles SM, Oi DH, Plowes RM, Sanchez-Arroyo H, Varone L et al. Geographic distribution suggests that Solenopsis invicta is the host of predilection for Solenopsis invicta virus 1. J Invertebr Pathol 2013;113:232–236 [CrossRef][PubMed]
    [Google Scholar]
  12. Johansson H, Dhaygude K, Lindström S, Helanterä H, Sundström L et al. A metatranscriptomic approach to the identification of microbiota associated with the ant Formica exsecta. PLoS One 2013;8:e79777 [CrossRef][PubMed]
    [Google Scholar]
  13. Valles SM, Oi DH, Becnel JJ, Wetterer JK, Lapolla JS et al. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva. Virology 2016;496:244–254 [CrossRef][PubMed]
    [Google Scholar]
  14. Hashimoto Y, Valles SM. Detection and quantitation of Solenopsis invicta virus-2 genomic and intermediary replicating viral RNA in fire ant workers and larvae. J Invertebr Pathol 2008;98:243–245 [CrossRef][PubMed]
    [Google Scholar]
  15. Valles SM, Strong CA, Dang PM, Hunter WB, Pereira RM et al. A picorna-like virus from the red imported fire ant, Solenopsis invicta: initial discovery, genome sequence, and characterization. Virology 2004;328:151–157 [CrossRef]
    [Google Scholar]
  16. Valles SM, Oi DH, Yu F, Tan XX, Buss EA. Metatranscriptomics and pyrosequencing facilitate discovery of potential viral natural enemies of the invasive Caribbean crazy ant, Nylanderia pubens. PLoS One 2012;7:e31828 [CrossRef][PubMed]
    [Google Scholar]
  17. Porter SD, Valles SM, Oi DH. Host specificity and colony impacts of the fire ant pathogen, Solenopsis invicta virus 3. J Invertebr Pathol 2013;114:1–6 [CrossRef][PubMed]
    [Google Scholar]
  18. Valles SM, Strong CA, Dang PM, Hunter WB, Pereira RM et al. A picorna-like virus from the red imported fire ant, Solenopsis invicta: initial discovery, genome sequence, and characterization. Virology 2004;328:151–157 [CrossRef][PubMed]
    [Google Scholar]
  19. Valles SM, Porter SD, Calcaterra LA. Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina. PLoS One 2018;13:e0192377 [CrossRef][PubMed]
    [Google Scholar]
  20. Valles SM, Hashimoto Y. Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting the red imported fire ant, Solenopsis invicta. Virology 2009;388:354–361 [CrossRef][PubMed]
    [Google Scholar]
  21. Valles SM, Strong CA, Oi DH, Porter SD, Pereira RM et al. Phenology, distribution, and host specificity of Solenopsis invicta virus-1. J Invertebr Pathol 2007;96:18–27 [CrossRef][PubMed]
    [Google Scholar]
  22. Manfredini F, Shoemaker D, Grozinger CM. Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta). Ecol Evol 2016;6:233–244 [CrossRef][PubMed]
    [Google Scholar]
  23. Sébastien A, Lester PJ, Hall RJ, Wang J, Moore NE et al. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen. Biol Lett 2015;11:20150610 [CrossRef][PubMed]
    [Google Scholar]
  24. Gruber MAM, Cooling M, Baty JW, Buckley K, Friedlander A et al. Single-stranded RNA viruses infecting the invasive Argentine ant, Linepithema humile. Sci Rep 2017;7:3304 [CrossRef][PubMed]
    [Google Scholar]
  25. Morandin C, Tin MM, Abril S, Gómez C, Pontieri L et al. Erratum to: Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants. Genome Biol 2016;17:179 [CrossRef][PubMed]
    [Google Scholar]
  26. Olendraite I, Lukhovitskaya NI, Porter SD, Valles SM, Firth AE. Polycipiviridae: a proposed new family of polycistronic picorna-like RNA viruses. J Gen Virol 2017;98:2368–2378 [CrossRef][PubMed]
    [Google Scholar]
  27. Shi M, Lin XD, Tian JH, Chen LJ, Chen X et al. Redefining the invertebrate RNA virosphere. Nature 2016;540:539–543 [CrossRef][PubMed]
    [Google Scholar]
  28. de Miranda JR, Cordoni G, Budge G. The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol 2010;103:S30–S47 [CrossRef][PubMed]
    [Google Scholar]
  29. Sanjuán R. From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses. PLoS Pathog 2012;8:e1002685 [CrossRef][PubMed]
    [Google Scholar]
  30. Levitt AL, Singh R, Cox-Foster DL, Rajotte E, Hoover K et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res 2013;176:232–240 [CrossRef][PubMed]
    [Google Scholar]
  31. Meeus I, de Miranda JR, de Graaf DC, Wäckers F, Smagghe G. Effect of oral infection with Kashmir bee virus and Israeli acute paralysis virus on bumblebee (Bombus terrestris) reproductive success. J Invertebr Pathol 2014;121:64–69 [CrossRef][PubMed]
    [Google Scholar]
  32. Shen M, Yang X, Cox-Foster D, Cui L. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 2005;342:141–149 [CrossRef][PubMed]
    [Google Scholar]
  33. Jacqui HT, Joachim RDM, Brenda VB, Todd JH, de MJ et al. Incidence and molecular characterization of viruses found in dying New Zealand honey bee (Apis mellifera) colonies infested with Varroa destructor. Apidologie 2007;38:354–367
    [Google Scholar]
  34. Desai SD, Currie RW. Effects of wintering environment and parasite-pathogen interactions on honey bee colony loss in north temperate regions. PLoS One 2016;11:e0159615 [CrossRef][PubMed]
    [Google Scholar]
  35. Tentcheva D, Gauthier L, Zappulla N, Dainat B, Cousserans F et al. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl Environ Microbiol 2004;70:7185–7191 [CrossRef][PubMed]
    [Google Scholar]
  36. Brandt M, van Wilgenburg E, Tsutsui ND. Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol Ecol 2009;18:997–1005 [CrossRef][PubMed]
    [Google Scholar]
  37. Vogel V, Pedersen JS, Giraud T, Krieger MJB, Keller L. The worldwide expansion of the Argentine ant. Divers Distrib 2010;16:170–186 [CrossRef]
    [Google Scholar]
  38. Díaz-Muñoz SL, Sanjuán R, West S. Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 2017;22:437–441 [CrossRef][PubMed]
    [Google Scholar]
  39. Mascia T, Gallitelli D. Synergies and antagonisms in virus interactions. Plant Sci 2016;252:176–192 [CrossRef][PubMed]
    [Google Scholar]
  40. Dapalma T, Doonan BP, Trager NM, Kasman LM. A systematic approach to virus-virus interactions. Virus Res 2010;149:1–9 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang XS, Cao KF. The impact of coinfections and their simultaneous transmission on antigenic diversity and epidemic cycling of infectious diseases. Biomed Res Int 2014;2014:1–23 [CrossRef][PubMed]
    [Google Scholar]
  42. van Asten L, Bijkerk P, Fanoy E, van Ginkel A, Suijkerbuijk A et al. Early occurrence of influenza A epidemics coincided with changes in occurrence of other respiratory virus infections. Influenza Other Respir Viruses 2016;10:14–26 [CrossRef][PubMed]
    [Google Scholar]
  43. Zheng X, Song Z, Li Y, Zhang J, Wang XL. Possible interference between seasonal epidemics of influenza and other respiratory viruses in Hong Kong, 2014-2017. BMC Infect Dis 2017;17:772 [CrossRef][PubMed]
    [Google Scholar]
  44. Achten NB, Wu P, Bont L, Blanken MO, Gebretsadik T et al. Interference between respiratory syncytial virus and human rhinovirus infection in infancy. J Infect Dis 2017;215:1102–1106 [CrossRef][PubMed]
    [Google Scholar]
  45. Opatowski L, Baguelin M, Eggo RM. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: a key role for mathematical modelling. PLoS Pathog 2018;14:e1006770 [CrossRef][PubMed]
    [Google Scholar]
  46. Pinky L, Dobrovolny HM. Coinfections of the respiratory tract: viral competition for resources. PLoS One 2016;11:e0155589 [CrossRef][PubMed]
    [Google Scholar]
  47. Belshaw R, Gardner A, Rambaut A, Pybus OG. Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol 2008;23:188–193 [CrossRef][PubMed]
    [Google Scholar]
  48. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008;9:267–276 [CrossRef][PubMed]
    [Google Scholar]
  49. Hicks AL, Duffy S. Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses. PLoS Pathog 2014;10:e1003838 [CrossRef][PubMed]
    [Google Scholar]
  50. Smith EC, Sexton NR, Denison MR. Thinking outside the triangle: replication fidelity of the largest RNA viruses. Annu Rev Virol 2014;1:111–132 [CrossRef][PubMed]
    [Google Scholar]
  51. Regoes RR, Hamblin S, Tanaka MM. Viral mutation rates: modelling the roles of within-host viral dynamics and the trade-off between replication fidelity and speed. Proc Biol Sci 2013;280:20122047 [CrossRef][PubMed]
    [Google Scholar]
  52. Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev 2012;76:159–216 [CrossRef][PubMed]
    [Google Scholar]
  53. Grabherr MG, Haas BG, Levin M, Thompson DA, Amit I et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 2013;29:644–652
    [Google Scholar]
  54. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef][PubMed]
    [Google Scholar]
  55. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv 2013;1303
    [Google Scholar]
  56. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–580 [CrossRef][PubMed]
    [Google Scholar]
  57. Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2017;S0022-2836:30587–30589 [CrossRef][PubMed]
    [Google Scholar]
  58. Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 2017;45:e18 [CrossRef][PubMed]
    [Google Scholar]
  59. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res 1999;9:868–877 [CrossRef][PubMed]
    [Google Scholar]
  60. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  61. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–1973 [CrossRef][PubMed]
    [Google Scholar]
  62. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011;27:1164–1165 [CrossRef][PubMed]
    [Google Scholar]
  63. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  64. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  65. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007;24:1586–1591 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001104
Loading
/content/journal/jgv/10.1099/jgv.0.001104
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error