1887

Abstract

We have shown that cell-free HIV-1 and viral proteins tat and gp120 activate mitogen-activated protein kinases (MAPKs) in tonsil epithelial cells, disrupting their tight and adherens junctions. This causes liberation of the HSV-1 receptor nectin-1 from assembled adherens junctions, leading to promotion of HSV-1 infection and spread. In the present study, we show that HIV-associated activation of MAPK leads to upregulation of transcription factor NF-κB and matrix metalloproteinase-9 (MMP-9). This induces the disruption of tight and adherens junctions, increasing HSV-1 cell-to-cell spread. Inhibition of HIV-associated MAPK activation by U0126 abolishes NF-κB and MMP-9 upregulation and reduces HSV-1 spread. Inactivation of MMP-9 also reduced HIV-promoted HSV-1 spread. These results indicate that HIV-1-activated MAPK/NF-κB and MMP-9 play a critical role in the disruption of oral epithelial junctions and HSV-1 cell-to-cell spread. Inhibition of MMP-9 expression in the oral epithelium of HIV-infected individuals may prevent the development of diseases caused by HSV-1, such as ulcers, necrotic lesions and gingivostomatitis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001075
2018-05-18
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/7/937.html?itemId=/content/journal/jgv/10.1099/jgv.0.001075&mimeType=html&fmt=ahah

References

  1. Zuckerman R, Manji K, Matee M, Naburi H, Bisimba J et al. HSV oropharyngeal shedding among HIV-infected children in Tanzania. Int J STD AIDS 2015;26:456–461 [CrossRef][PubMed]
    [Google Scholar]
  2. Narendra SK, Sahani NC, Moharana DN. Manifestations of acute herpetic gingivostomatitis in human immunodeficiency virus: positive patients. J Int Oral Health 2016;8:460–464
    [Google Scholar]
  3. van de Perre P, Segondy M, Foulongne V, Ouedraogo A, Konate I et al. Herpes simplex virus and HIV-1: deciphering viral synergy. Lancet Infect Dis 2008;8:490–497 [CrossRef][PubMed]
    [Google Scholar]
  4. Griffin E, Krantz E, Selke S, Huang ML, Wald A. Oral mucosal reactivation rates of herpesviruses among HIV-1 seropositive persons. J Med Virol 2008;80:1153–1159 [CrossRef][PubMed]
    [Google Scholar]
  5. Posavad CM, Wald A, Kuntz S, Huang ML, Selke S et al. Frequent reactivation of herpes simplex virus among HIV-1-infected patients treated with highly active antiretroviral therapy. J Infect Dis 2004;190:693–696 [CrossRef][PubMed]
    [Google Scholar]
  6. Tan DH, Raboud JM, Kaul R, Walmsley SL. Antiretroviral therapy is not associated with reduced herpes simplex virus shedding in HIV coinfected adults: an observational cohort study. BMJ Open 2014;4:e004210 [CrossRef][PubMed]
    [Google Scholar]
  7. Sufiawati I, Tugizov SM. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread. PLoS One 2014;9:e88803 [CrossRef][PubMed]
    [Google Scholar]
  8. Barillari G, Sgadari C, Fiorelli V, Samaniego F, Colombini S et al. The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the alpha5beta1 and alphavbeta3 integrins and by mobilizing sequestered basic fibroblast growth factor. Blood 1999;94:663–672[PubMed]
    [Google Scholar]
  9. Barillari G, Sgadari C, Palladino C, Gendelman R, Caputo A et al. Inflammatory cytokines synergize with the HIV-1 Tat protein to promote angiogenesis and Kaposi's sarcoma via induction of basic fibroblast growth factor and the alpha v beta 3 integrin. J Immunol 1999;163:1929–1935[PubMed]
    [Google Scholar]
  10. Urbinati C, Mitola S, Tanghetti E, Kumar C, Waltenberger J et al. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 2005;25:2315–2320 [CrossRef][PubMed]
    [Google Scholar]
  11. Vogel BE, Lee SJ, Hildebrand A, Craig W, Pierschbacher MD et al. A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J Cell Biol 1993;121:461–468 [CrossRef][PubMed]
    [Google Scholar]
  12. Toschi E, Bacigalupo I, Strippoli R, Chiozzini C, Cereseto A et al. HIV-1 Tat regulates endothelial cell cycle progression via activation of the Ras/ERK MAPK signaling pathway. Mol Biol Cell 2006;17:1985–1994 [CrossRef][PubMed]
    [Google Scholar]
  13. Maresca M, Mahfoud R, Garmy N, Kotler DP, Fantini J et al. The virotoxin model of HIV-1 enteropathy: involvement of GPR15/Bob and galactosylceramide in the cytopathic effects induced by HIV-1 gp120 in the HT-29-D4 intestinal cell line. J Biomed Sci 2003;10:156–166 [CrossRef][PubMed]
    [Google Scholar]
  14. Lee C, Liu QH, Tomkowicz B, Yi Y, Freedman BD et al. Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signaling pathways. J Leukoc Biol 2003;74:676–682 [CrossRef][PubMed]
    [Google Scholar]
  15. del Corno M, Liu QH, Schols D, de Clercq E, Gessani S et al. HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood 2001;98:2909–2916 [CrossRef][PubMed]
    [Google Scholar]
  16. Freedman BD, Liu QH, del Corno M, Collman RG. HIV-1 gp120 chemokine receptor-mediated signaling in human macrophages. Immunol Res 2003;27:261–276 [CrossRef][PubMed]
    [Google Scholar]
  17. Xiao J, Palefsky JM, Herrera R, Berline J, Tugizov SM. EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology 2009;388:335–343 [CrossRef][PubMed]
    [Google Scholar]
  18. Herrera R, Morris M, Rosbe K, Feng Z, Weinberg A et al. Human beta-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology 2016;487:172–187 [CrossRef][PubMed]
    [Google Scholar]
  19. Tugizov SM, Herrera R, Veluppillai P, Greenspan D, Soros V et al. HIV is inactivated after transepithelial migration via adult oral epithelial cells but not fetal epithelial cells. Virology 2011;409:211–222 [CrossRef][PubMed]
    [Google Scholar]
  20. Xiao J, Palefsky JM, Herrera R, Tugizov SM. Characterization of the Epstein-Barr virus glycoprotein BMRF-2. Virology 2007;359:382–396 [CrossRef][PubMed]
    [Google Scholar]
  21. Bomsel M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med 1997;3:42–47 [CrossRef][PubMed]
    [Google Scholar]
  22. Hocini H, Bomsel M. Infectious human immunodeficiency virus can rapidly penetrate a tight human epithelial barrier by transcytosis in a process impaired by mucosal immunoglobulins. J Infect Dis 1999;179:S448–S453 [CrossRef][PubMed]
    [Google Scholar]
  23. Bobardt MD, Chatterji U, Selvarajah S, van der Schueren B, David G et al. Cell-free human immunodeficiency virus type 1 transcytosis through primary genital epithelial cells. J Virol 2007;81:395–405 [CrossRef][PubMed]
    [Google Scholar]
  24. Saïdi H, Magri G, Nasreddine N, Réquena M, Bélec L. R5- and X4-HIV-1 use differentially the endometrial epithelial cells HEC-1A to ensure their own spread: implication for mechanisms of sexual transmission. Virology 2007;358:55–68 [CrossRef][PubMed]
    [Google Scholar]
  25. Hocini H, Becquart P, Bouhlal H, Chomont N, Ancuta P et al. Active and selective transcytosis of cell-free human immunodeficiency virus through a tight polarized monolayer of human endometrial cells. J Virol 2001;75:5370–5374 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar RB, Maher DM, Herzberg MC, Southern PJ. Expression of HIV receptors, alternate receptors and co-receptors on tonsillar epithelium: implications for HIV binding and primary oral infection. Virol J 2006;3:25 [CrossRef][PubMed]
    [Google Scholar]
  27. Yeaman GR, Asin S, Weldon S, Demian DJ, Collins JE et al. Chemokine receptor expression in the human ectocervix: implications for infection by the human immunodeficiency virus-type I. Immunology 2004;113:524–533 [CrossRef][PubMed]
    [Google Scholar]
  28. Kohli A, Islam A, Moyes DL, Murciano C, Shen C et al. Oral and vaginal epithelial cell lines bind and transfer cell-free infectious HIV-1 to permissive cells but are not productively infected. PLoS One 2014;9:e98077 [CrossRef][PubMed]
    [Google Scholar]
  29. Cho A, Graves J, Reidy MA. Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000;20:2527–2532 [CrossRef][PubMed]
    [Google Scholar]
  30. Yang CQ, Li W, Li SQ, Li J, Li YW et al. MCP-1 stimulates MMP-9 expression via ERK 1/2 and p38 MAPK signaling pathways in human aortic smooth muscle cells. Cell Physiol Biochem 2014;34:266–276 [CrossRef][PubMed]
    [Google Scholar]
  31. Ju SM, Song HY, Lee JA, Lee SJ, Choi SY et al. Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-κB dependent pathway in human astrocytes. Exp Mol Med 2009;41:86–93 [CrossRef][PubMed]
    [Google Scholar]
  32. Chen F, Ohashi N, Li W, Eckman C, Nguyen JH. Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatology 2009;50:1914–1923 [CrossRef][PubMed]
    [Google Scholar]
  33. Vermeer PD, Denker J, Estin M, Moninger TO, Keshavjee S et al. MMP9 modulates tight junction integrity and cell viability in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 2009;296:L751–L762 [CrossRef][PubMed]
    [Google Scholar]
  34. Symowicz J, Adley BP, Gleason KJ, Johnson JJ, Ghosh S et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res 2007;67:2030–2039 [CrossRef][PubMed]
    [Google Scholar]
  35. Bauer AT, Bürgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 2010;30:837–848 [CrossRef][PubMed]
    [Google Scholar]
  36. Cauwe B, van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 2007;42:113–185 [CrossRef][PubMed]
    [Google Scholar]
  37. Zheng G, Lyons JG, Tan TK, Wang Y, Hsu TT et al. Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol 2009;175:580–591 [CrossRef][PubMed]
    [Google Scholar]
  38. Sen R, Smale ST. Selectivity of the NF-κB response. Cold Spring Harb Perspect Biol 2010;2:a000257 [CrossRef][PubMed]
    [Google Scholar]
  39. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell 2008;132:344–362 [CrossRef][PubMed]
    [Google Scholar]
  40. Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009;1:a000034 [CrossRef][PubMed]
    [Google Scholar]
  41. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol 2011;12:695–708 [CrossRef][PubMed]
    [Google Scholar]
  42. Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB subunits by phosphorylation. Cells 2016;5:12 [CrossRef][PubMed]
    [Google Scholar]
  43. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999;18:6853–6866 [CrossRef][PubMed]
    [Google Scholar]
  44. Cohen M, Meisser A, Haenggeli L, Bischof P. Involvement of MAPK pathway in TNF-alpha-induced MMP-9 expression in human trophoblastic cells. Mol Hum Reprod 2006;12:225–232 [CrossRef][PubMed]
    [Google Scholar]
  45. Tsai CH, Hsieh YS, Yang SF, Chou MY, Chang YC. Matrix metalloproteinase 2 and matrix metalloproteinase 9 expression in human oral squamous cell carcinoma and the effect of protein kinase C inhibitors: preliminary observations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:710–716 [CrossRef][PubMed]
    [Google Scholar]
  46. Tamamura R, Nagatsuka H, Siar CH, Katase N, Naito I et al. Comparative analysis of basal lamina type IV collagen α chains, matrix metalloproteinases-2 and -9 expressions in oral dysplasia and invasive carcinoma. Acta Histochem 2013;115:113–119 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhou CX, Gao Y, Johnson NW, Gao J. Immunoexpression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in the metastasis of squamous cell carcinoma of the human tongue. Aust Dent J 2010;55:385–389 [CrossRef][PubMed]
    [Google Scholar]
  48. Fan HX, Li HX, Chen D, Gao ZX, Zheng JH. Changes in the expression of MMP2, MMP9, and ColIV in stromal cells in oral squamous tongue cell carcinoma: relationships and prognostic implications. J Exp Clin Cancer Res 2012;31:90 [CrossRef][PubMed]
    [Google Scholar]
  49. Huet E, Vallée B, Delbé J, Mourah S, Prulière-Escabasse V et al. EMMPRIN modulates epithelial barrier function through a MMP-mediated occludin cleavage: implications in dry eye disease. Am J Pathol 2011;179:1278–1286 [CrossRef][PubMed]
    [Google Scholar]
  50. Xu R, Feng X, Xie X, Zhang J, Wu D et al. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 2012;1436:13–19 [CrossRef][PubMed]
    [Google Scholar]
  51. Pflugfelder SC, Farley W, Luo L, Chen LZ, de Paiva CS et al. Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye. Am J Pathol 2005;166:61–71 [CrossRef][PubMed]
    [Google Scholar]
  52. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 2007;50:202–211 [CrossRef][PubMed]
    [Google Scholar]
  53. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008;1778:660–669 [CrossRef][PubMed]
    [Google Scholar]
  54. Cowden Dahl KD, Symowicz J, Ning Y, Gutierrez E, Fishman DA et al. Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. Cancer Res 2008;68:4606–4613 [CrossRef][PubMed]
    [Google Scholar]
  55. Tugizov SM, Herrera R, Chin-Hong P, Veluppillai P, Greenspan D et al. HIV-associated disruption of mucosal epithelium facilitates paracellular penetration by human papillomavirus. Virology 2013;446:378–388 [CrossRef][PubMed]
    [Google Scholar]
  56. Rodríguez-Iñigo E, Jiménez E, Bartolomé J, Ortiz-Movilla N, Bartolomé Villar B et al. Detection of human immunodeficiency virus type 1 RNA by in situ hybridization in oral mucosa epithelial cells from anti-HIV-1 positive patients. J Med Virol 2005;77:17–22 [CrossRef][PubMed]
    [Google Scholar]
  57. Chou LL, Epstein J, Cassol SA, West DM, He W et al. Oral mucosal Langerhans' cells as target, effector and vector in HIV infection. J Oral Pathol Med 2000;29:394–402 [CrossRef][PubMed]
    [Google Scholar]
  58. Goto Y, Yeh CK, Notkins AL, Prabhakar BS. Detection of proviral sequences in saliva of patients infected with human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1991;7:343–347 [CrossRef][PubMed]
    [Google Scholar]
  59. Kakizawa J, Ushijima H, Oka S, Ikeda Y, Schröder HC et al. Detection of human immunodeficiency virus-1 DNA, RNA and antibody, and occult blood in inactivated saliva: availability of the filter paper disk method. Acta Paediatr Jpn 1996;38:218–223 [CrossRef][PubMed]
    [Google Scholar]
  60. Liuzzi G, Chirianni A, Clementi M, Bagnarelli P, Valenza A et al. Analysis of HIV-1 load in blood, semen and saliva: evidence for different viral compartments in a cross-sectional and longitudinal study. AIDS 1996;10:F51–F56 [CrossRef][PubMed]
    [Google Scholar]
  61. Maticic M, Poljak M, Kramar B, Tomazic J, Vidmar L et al. Proviral HIV-1 DNA in gingival crevicular fluid of HIV-1-infected patients in various stages of HIV disease. J Dent Res 2000;79:1496–1501 [CrossRef][PubMed]
    [Google Scholar]
  62. Qureshi MN, Barr CE, Hewlitt I, Boorstein R, Kong F et al. Detection of HIV in oral mucosal cells. Oral Dis 1997;3:S73–S78 [CrossRef][PubMed]
    [Google Scholar]
  63. Tugizov SM, Herrera R, Palefsky JM. Epstein-Barr virus transcytosis through polarized oral epithelial cells. J Virol 2013;87:8179–8194 [CrossRef][PubMed]
    [Google Scholar]
  64. Yasen A, Herrera R, Rosbe K, Lien K, Tugizov SM. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction. PLoS Pathog 2017;13:e1006247 [CrossRef][PubMed]
    [Google Scholar]
  65. Yasen A, Herrera R, Rosbe K, Lien K, Tugizov SM. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles. Virology 2018;515:92–107 [CrossRef][PubMed]
    [Google Scholar]
  66. Tugizov SM, Herrera R, Veluppillai P, Greenspan D, Soros V et al. Differential transmission of HIV traversing fetal oral/intestinal epithelia and adult oral epithelia. J Virol 2012;86:2556–2570 [CrossRef][PubMed]
    [Google Scholar]
  67. Bai L, Zhang Z, Zhang H, Li X, Yu Q et al. HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: an in vitro study. BMC Infect Dis 2008;8:77 [CrossRef][PubMed]
    [Google Scholar]
  68. Navarro D, Paz P, Pereira L. Domains of herpes simplex virus I glycoprotein B that function in virus penetration, cell-to-cell spread, and cell fusion. Virology 1992;186:99–112 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001075
Loading
/content/journal/jgv/10.1099/jgv.0.001075
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error