Fish polyomaviruses belong to two distinct evolutionary lineages Open Access

Abstract

The is a diverse family of circular double-stranded DNA viruses. Polyomaviruses have been isolated from a wide array of animal hosts. An understanding of the evolutionary and ecological dynamics of these viruses is essential to understanding the pathogenicity of polyomaviruses. Using a high throughput sequencing approach, we identified a novel polyomavirus in an emerald notothen () sampled in the Ross sea (Antarctica), expanding the known number of fish-associated polyomaviruses. Our analysis suggests that polyomaviruses belong to three main evolutionary clades; the first clade is made up of all recognized terrestrial polyomaviruses. The fish-associated polyomaviruses are not monophyletic, and belong to two divergent evolutionary lineages. The fish viruses provide evidence that the evolution of the key viral large T protein involves gain and loss of distinct domains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001041
2018-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/4/567.html?itemId=/content/journal/jgv/10.1099/jgv.0.001041&mimeType=html&fmt=ahah

References

  1. Zur Hausen H. Novel human polyomaviruses-re-emergence of a well known virus family as possible human carcinogens. Int J Cancer 2008; 123:247–250 [View Article][PubMed]
    [Google Scholar]
  2. Moens U, Calvignac-Spencer S, Lauber C, Ramqvist T, Feltkamp MCW et al. ICTV Virus Taxonomy Profile: Polyomaviridae. J Gen Virol 2017; 98:1159–1160 [View Article][PubMed]
    [Google Scholar]
  3. Gross L. The fortuitous isolation and identification of the polyoma virus. Cancer Res 1976; 36:4195–4196[PubMed]
    [Google Scholar]
  4. Lunn RM, Jahnke GD, Rabkin CS. Tumour virus epidemiology. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160266 [View Article][PubMed]
    [Google Scholar]
  5. DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160276 [View Article][PubMed]
    [Google Scholar]
  6. Amaral T, Leiter U, Garbe C. Merkel cell carcinoma: epidemiology, pathogenesis, diagnosis and therapy. Rev Endocr Metab Disord 2017 [View Article][PubMed]
    [Google Scholar]
  7. Gheit T, Dutta S, Oliver J, Robitaille A, Hampras S et al. Isolation and characterization of a novel putative human polyomavirus. Virology 2017; 506:45–54 [View Article][PubMed]
    [Google Scholar]
  8. dela Cruz FN, Li L, Delwart E, Pesavento PA. A novel pulmonary polyomavirus in alpacas (Vicugna pacos). Vet Microbiol 2017; 201:49–55 [View Article][PubMed]
    [Google Scholar]
  9. Feltkamp MC, Kazem S, van der Meijden E, Lauber C, Gorbalenya AE. From Stockholm to Malawi: recent developments in studying human polyomaviruses. J Gen Virol 2013; 94:482–496 [View Article][PubMed]
    [Google Scholar]
  10. Buck CB, van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ et al. The Ancient evolutionary history of polyomaviruses. PLoS Pathog 2016; 12:e1005574 [View Article][PubMed]
    [Google Scholar]
  11. van Doorslaer K. Evolution of the Papillomaviridae. Virology 2013; 445:11–20 [View Article][PubMed]
    [Google Scholar]
  12. Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci USA 2012; 109:3434–3439 [View Article][PubMed]
    [Google Scholar]
  13. Smeele ZE, Ainley DG, Varsani A. Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Res 2018; 243:91–105 [View Article][PubMed]
    [Google Scholar]
  14. Peretti A, Fitzgerald PC, Bliskovsky V, Pastrana DV, Buck CB. Genome sequence of a fish-associated polyomavirus, black sea bass (Centropristis striata) polyomavirus 1. Genome Announc 2015; 3:e01476-14 [View Article][PubMed]
    [Google Scholar]
  15. López-Bueno A, Mavian C, Labella AM, Castro D, Borrego JJ et al. Concurrence of iridovirus, polyomavirus, and a unique member of a new group of fish papillomaviruses in lymphocystis disease-affected gilthead sea bream. J Virol 2016; 90:8768–8779 [View Article][PubMed]
    [Google Scholar]
  16. Mizutani T, Sayama Y, Nakanishi A, Ochiai H, Sakai K et al. Novel DNA virus isolated from samples showing endothelial cell necrosis in the Japanese eel, Anguilla japonica. Virology 2011; 412:179–187 [View Article][PubMed]
    [Google Scholar]
  17. Okazaki S, Yasumoto S, Koyama S, Tsuchiaka S, Naoi Y et al. Detection of Japanese eel endothelial cells-infecting virus in Anguilla japonica elvers. J Vet Med Sci 2016; 78:705–707 [View Article][PubMed]
    [Google Scholar]
  18. Wen CM, Chen MM, Wang CS, Liu PC, Nan FH. Isolation of a novel polyomavirus, related to Japanese eel endothelial cell-infecting virus, from marbled eels, Anguilla marmorata (Quoy & Gaimard). J Fish Dis 2016; 39:889–897 [View Article][PubMed]
    [Google Scholar]
  19. Schuurman R, Sol C, van der Noordaa J. The complete nucleotide sequence of bovine polyomavirus. J Gen Virol 1990; 71:1723–1735 [View Article][PubMed]
    [Google Scholar]
  20. Stevens H, Bertelsen MF, Sijmons S, van Ranst M, Maes P. Characterization of a novel polyomavirus isolated from a fibroma on the trunk of an African elephant (Loxodonta africana). PLoS One 2013; 8:e77884 [View Article][PubMed]
    [Google Scholar]
  21. Cantalupo PG, Buck CB, Pipas JM. Complete genome sequence of a polyomavirus recovered from a pomona leaf-nosed bat (Hipposideros pomona) metagenome data set. Genome Announc 2017; 5:e01053-16 [View Article][PubMed]
    [Google Scholar]
  22. Pipas JM. Common and unique features of T antigens encoded by the polyomavirus group. J Virol 1992; 66:3979–3985[PubMed]
    [Google Scholar]
  23. Kelley WL. The J-domain family and the recruitment of chaperone power. Trends Biochem Sci 1998; 23:222–227 [View Article][PubMed]
    [Google Scholar]
  24. Campbell KS, Mullane KP, Aksoy IA, Stubdal H, Zalvide J et al. DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes Dev 1997; 11:1098–1110 [View Article][PubMed]
    [Google Scholar]
  25. Peden KW, Pipas JM. Simian virus 40 mutants with amino-acid substitutions near the amino terminus of large T antigen. Virus Genes 1992; 6:107–118 [View Article][PubMed]
    [Google Scholar]
  26. An P, Sáenz Robles MT, Pipas JM. Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 2012; 66:213–236 [View Article][PubMed]
    [Google Scholar]
  27. Bennett MD, Reiss A, Stevens H, Heylen E, van Ranst M et al. The first complete papillomavirus genome characterized from a marsupial host: a novel isolate from Bettongia penicillata. J Virol 2010; 84:5448–5453 [View Article][PubMed]
    [Google Scholar]
  28. Woolford L, Rector A, van Ranst M, Ducki A, Bennett MD et al. A novel virus detected in papillomas and carcinomas of the endangered western barred bandicoot (Perameles bougainville) exhibits genomic features of both the Papillomaviridae and Polyomaviridae. J Virol 2007; 81:13280–13290 [View Article][PubMed]
    [Google Scholar]
  29. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article][PubMed]
    [Google Scholar]
  30. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  31. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008; 9:286–298 [View Article][PubMed]
    [Google Scholar]
  32. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011; 27:1164–1165 [View Article][PubMed]
    [Google Scholar]
  33. Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005; 21:2104–2105 [View Article][PubMed]
    [Google Scholar]
  34. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article][PubMed]
    [Google Scholar]
  35. Miller MA, Schwartz T, Pickett BE, He S, Klem EB et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol Bioinform Online 2015; 11:43–8 [View Article][PubMed]
    [Google Scholar]
  36. Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article][PubMed]
    [Google Scholar]
  37. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  38. Bouckaert R, Heled J. DensiTree 2: seeing trees through the Forest. bioRxiv 2014 [View Article]
    [Google Scholar]
  39. Bouckaert RR. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 2010; 26:1372–1373 [View Article][PubMed]
    [Google Scholar]
  40. Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 2013; 41:W349–W357 [View Article][PubMed]
    [Google Scholar]
  41. Lobley A, Sadowski MI, Jones DT. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 2009; 25:1761–1767 [View Article][PubMed]
    [Google Scholar]
  42. Berjanskii MV, Riley MI, Xie A, Semenchenko V, Folk WR et al. NMR structure of the N-terminal J domain of murine polyomavirus T antigens. Implications for DnaJ-like domains and for mutations of T antigens. J Biol Chem 2000; 275:36094–36103 [View Article][PubMed]
    [Google Scholar]
  43. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605–1612 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001041
Loading
/content/journal/jgv/10.1099/jgv.0.001041
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most cited Most Cited RSS feed