1887

Abstract

Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host’s first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host–pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

Keyword(s): AIDS , HIV-1 and restriction factors
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001026
2018-04-01
2020-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/4/435.html?itemId=/content/journal/jgv/10.1099/jgv.0.001026&mimeType=html&fmt=ahah

References

  1. Centers for Disease Control (CDC) Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men - New York City and California. MMWR Morb Mortal Wkly Rep 1981;30:305–308[PubMed]
    [Google Scholar]
  2. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983;220:868–871 [CrossRef][PubMed]
    [Google Scholar]
  3. Coffin J, Haase A, Levy JA, Montagnier L, Oroszlan S et al. What to call the AIDS virus?. Nature 1986;321:10[PubMed]
    [Google Scholar]
  4. WHO | HIV/AIDS WHO. 2015;www.who.int/mediacentre/factsheets/fs360/en/ accessed March 16, 2016
  5. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 2011;365:493–505 [CrossRef][PubMed]
    [Google Scholar]
  6. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 2013;155:540–551 [CrossRef][PubMed]
    [Google Scholar]
  7. Safrit JT, Fast PE, Gieber L, Kuipers H, Dean HJ et al. Status of vaccine research and development of vaccines for HIV-1. Vaccine 2016;34:2921–2925 [CrossRef][PubMed]
    [Google Scholar]
  8. Goila-Gaur R, Strebel K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 2008;5:51 [CrossRef][PubMed]
    [Google Scholar]
  9. Malim MH. APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 2009;364:675–687 [CrossRef][PubMed]
    [Google Scholar]
  10. Smith JL, Bu W, Burdick RC, Pathak VK. Multiple ways of targeting APOBEC3-virion infectivity factor interactions for anti-HIV-1 drug development. Trends Pharmacol Sci 2009;30:638–646 [CrossRef][PubMed]
    [Google Scholar]
  11. Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM. Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol 2012;23:258–268 [CrossRef][PubMed]
    [Google Scholar]
  12. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002;418:646–650 [CrossRef][PubMed]
    [Google Scholar]
  13. Ahn J. Functional organization of human SAMHD1 and mechanisms of HIV-1 restriction. Biol Chem 2016;397:373–379 [CrossRef][PubMed]
    [Google Scholar]
  14. Kuang YQ, Liu HL, Zheng YT. The innate immune roles of host factors TRIM5α and Cyclophilin A on HIV-1 replication. Med Microbiol Immunol 2015;204:557–565 [CrossRef][PubMed]
    [Google Scholar]
  15. Mahauad-Fernandez WD, Okeoma CM. The role of BST-2/Tetherin in host protection and disease manifestation. Immun Inflamm Dis 2016;4:4–23 [CrossRef][PubMed]
    [Google Scholar]
  16. Zhang S, Zhong L, Chen B, Pan T, Zhang X et al. Identification of an HIV-1 replication inhibitor which rescues host restriction factor APOBEC3G in Vif-APOBEC3G complex. Antiviral Res 2015;122:20–27 [CrossRef][PubMed]
    [Google Scholar]
  17. Li Y, Luo L, Rasool N, Kang CY. Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J Virol 1993;67:584–588[PubMed]
    [Google Scholar]
  18. Montefiori DC, Robinson WE, Mitchell WM. Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1988;85:9248–9252 [CrossRef][PubMed]
    [Google Scholar]
  19. Pal R, Hoke GM, Sarngadharan MG. Role of oligosaccharides in the processing and maturation of envelope glycoproteins of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1989;86:3384–3388 [CrossRef][PubMed]
    [Google Scholar]
  20. Walker BD, Kowalski M, Goh WC, Kozarsky K, Krieger M et al. Inhibition of human immunodeficiency virus syncytium formation and virus replication by castanospermine. Proc Natl Acad Sci USA 1987;84:8120–8124 [CrossRef][PubMed]
    [Google Scholar]
  21. Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 2011;410:582–608 [CrossRef][PubMed]
    [Google Scholar]
  22. Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 2004;73:1019–1049 [CrossRef][PubMed]
    [Google Scholar]
  23. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012;13:448–462 [CrossRef][PubMed]
    [Google Scholar]
  24. Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 1985;54:631–664 [CrossRef][PubMed]
    [Google Scholar]
  25. Pisoni GB, Molinari M. Five Questions (with their answers) on ER-associated degradation. Traffic 2016;17:341–350 [CrossRef][PubMed]
    [Google Scholar]
  26. Lamriben L, Graham JB, Adams BM, Hebert DN. N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle. Traffic 2016;17:308–326 [CrossRef][PubMed]
    [Google Scholar]
  27. Moremen KW, Molinari M. N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol 2006;16:592–599 [CrossRef][PubMed]
    [Google Scholar]
  28. Tannous A, Pisoni GB, Hebert DN, Molinari M. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 2015;41:79–89 [CrossRef][PubMed]
    [Google Scholar]
  29. Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 1997;7:637–644 [CrossRef][PubMed]
    [Google Scholar]
  30. Mast SW, Moremen KW. Family 47 α-mannosidases in N-glycan processing. Methods Enzymol 2006;415:31–46 [CrossRef][PubMed]
    [Google Scholar]
  31. Gonzalez DS, Karaveg K, Vandersall-Nairn AS, Lal A, Moremen KW. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 1999;274:21375–21386 [CrossRef][PubMed]
    [Google Scholar]
  32. Herscovics A, Romero PA, Tremblay LO. The specificity of the yeast and human class I ER alpha 1,2-mannosidases involved in ER quality control is not as strict previously reported. Glycobiology 2002;12:14G-15G[PubMed]
    [Google Scholar]
  33. Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I et al. Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong α1-antitrypsin by human ER mannosidase I. J Biol Chem 2003;278:26287–26294 [CrossRef][PubMed]
    [Google Scholar]
  34. Wu Y, Swulius MT, Moremen KW, Sifers RN. Elucidation of the molecular logic by which misfolded α1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci USA 2003;100:8229–8234 [CrossRef][PubMed]
    [Google Scholar]
  35. Zhou T, Dang Y, Zheng YH. The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway. J Virol 2014;88:3474–3484 [CrossRef][PubMed]
    [Google Scholar]
  36. Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci USA 1977;74:3805–3809 [CrossRef][PubMed]
    [Google Scholar]
  37. Krueger KE, Papadopoulos V. Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J Biol Chem 1990;265:15015–15022[PubMed]
    [Google Scholar]
  38. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006;27:402–409 [CrossRef][PubMed]
    [Google Scholar]
  39. Li H, Yao Z, Degenhardt B, Teper G, Papadopoulos V. Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc Natl Acad Sci USA 2001;98:1267–1272 [CrossRef][PubMed]
    [Google Scholar]
  40. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 1992;89:3170–3174 [CrossRef][PubMed]
    [Google Scholar]
  41. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2001;2:67–71 [CrossRef][PubMed]
    [Google Scholar]
  42. Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003;112:481–490[PubMed][Crossref]
    [Google Scholar]
  43. Han Y, Wang X, Dang Y, Zheng YH. Demonstration of a novel HIV-1 restriction phenotype from a human T cell line. PLoS One 2008;3:e2796 [CrossRef][PubMed]
    [Google Scholar]
  44. Howell DN, Andreotti PE, Dawson JR, Cresswell P. Natural killing target antigens as inducers of interferon: studies with an immunoselected, natural killing-resistant human T lymphoblastoid cell line. J Immunol 1985;134:971–976[PubMed]
    [Google Scholar]
  45. Scott JE, Dawson JR. MHC class I expression and transport in a calnexin-deficient cell line. J Immunol 1995;155:143–148[PubMed]
    [Google Scholar]
  46. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science 1999;286:1882–1888 [CrossRef][PubMed]
    [Google Scholar]
  47. Otteken A, Moss B. Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J Biol Chem 1996;271:97–103 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhou T, Han Y, Dang Y, Wang X, Zheng YH. A novel HIV-1 restriction factor that is biologically distinct from APOBEC3 cytidine deaminases in a human T cell line CEM.NKR. Retrovirology 2009;6:31 [CrossRef][PubMed]
    [Google Scholar]
  49. Gilbert PB, Berger JO, Stablein D, Becker S, Essex M et al. Statistical interpretation of the RV144 HIV vaccine efficacy trial in Thailand: a case study for statistical issues in efficacy trials. J Infect Dis 2011;203:969–975 [CrossRef][PubMed]
    [Google Scholar]
  50. Avezov E, Frenkel Z, Ehrlich M, Herscovics A, Lederkremer GZ. Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation. Mol Biol Cell 2008;19:216–225 [CrossRef][PubMed]
    [Google Scholar]
  51. Feige MJ, Hendershot LM. Disulfide bonds in ER protein folding and homeostasis. Curr Opin Cell Biol 2011;23:167–175 [CrossRef][PubMed]
    [Google Scholar]
  52. Yang Y, Song Y, Loscalzo J. Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc Natl Acad Sci USA 2007;104:10813–10817 [CrossRef][PubMed]
    [Google Scholar]
  53. Kornmann B, Walter P. ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 2010;123:1389–1393 [CrossRef][PubMed]
    [Google Scholar]
  54. Karaveg K, Moremen KW. Energetics of substrate binding and catalysis by class 1 (glycosylhydrolase family 47) alpha-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 2005;280:29837–29848 [CrossRef][PubMed]
    [Google Scholar]
  55. Vallee F, Karaveg K, Herscovics A, Moremen KW, Howell PL. Structural basis for catalysis and inhibition of N-glycan processing class 1 alpha-1,2-mannosidase. J Biol Chem 2000
    [Google Scholar]
  56. Zhang X, Zhou T, Frabutt DA, Zheng YH. HIV-1 Vpr increases Env expression by preventing Env from endoplasmic reticulum-associated protein degradation (ERAD). Virology 2016;496:194–202 [CrossRef][PubMed]
    [Google Scholar]
  57. Mashiba M, Collins DR, Terry VH, Collins KL. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production. Cell Host Microbe 2014;16:722–735 [CrossRef][PubMed]
    [Google Scholar]
  58. Vestal DJ, Jeyaratnam JA. The guanylate-binding proteins: emerging insights into the biochemical properties and functions of this family of large interferon-induced guanosine triphosphatase. J Interferon Cytokine Res 2011;31:89–97 [CrossRef][PubMed]
    [Google Scholar]
  59. Olszewski MA, Gray J, Vestal DJ. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters. J Interferon Cytokine Res 2006;26:328–352 [CrossRef][PubMed]
    [Google Scholar]
  60. Anderson SL, Carton JM, Lou J, Xing L, Rubin BY. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 1999;256:8–14 [CrossRef][PubMed]
    [Google Scholar]
  61. Itsui Y, Sakamoto N, Kakinuma S, Nakagawa M, Sekine-Osajima Y et al. Antiviral effects of the interferon-induced protein guanylate binding protein 1 and its interaction with the hepatitis C virus NS5B protein. Hepatology 2009;50:1727–1737 [CrossRef][PubMed]
    [Google Scholar]
  62. Kim B, Nguyen LA, Daddacha W, Hollenbaugh JA. Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J Biol Chem 2012;287:21570–21574 [CrossRef][PubMed]
    [Google Scholar]
  63. Bartha I, McLaren PJ, Ciuffi A, Fellay J, Telenti A. GuavaH: a compendium of host genomic data in HIV biology and disease. Retrovirology 2014;11:6 [CrossRef][PubMed]
    [Google Scholar]
  64. McLaren PJ, Gawanbacht A, Pyndiah N, Krapp C, Hotter D et al. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 2015;12:41 [CrossRef][PubMed]
    [Google Scholar]
  65. Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA et al. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci USA 2013;110:13588–13593 [CrossRef][PubMed]
    [Google Scholar]
  66. Kim DY, Kwon E, Hartley PD, Crosby DC, Mann S et al. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol Cell 2013;49:632–644 [CrossRef][PubMed]
    [Google Scholar]
  67. Krapp C, Hotter D, Gawanbacht A, McLaren PJ, Kluge SF et al. Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity. Cell Host Microbe 2016;19:504–514 [CrossRef][PubMed]
    [Google Scholar]
  68. Hotter D, Sauter D, Kirchhoff F. Guanylate binding protein 5: Impairing virion infectivity by targeting retroviral envelope glycoproteins. Small GTPases 2017;8:31–37 [CrossRef][PubMed]
    [Google Scholar]
  69. Guerrero S, Batisse J, Libre C, Bernacchi S, Marquet R et al. HIV-1 replication and the cellular eukaryotic translation apparatus. Viruses 2015;7:199–218 [CrossRef][PubMed]
    [Google Scholar]
  70. Schubert U, Bour S, Willey RL, Strebel K. Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env. J Virol 1999;73:887–896[PubMed]
    [Google Scholar]
  71. Inuzuka M, Hayakawa M, Ingi T. Serinc, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J Biol Chem 2005;280:35776–35783 [CrossRef][PubMed]
    [Google Scholar]
  72. Craig HM, Pandori MW, Guatelli JC. Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc Natl Acad Sci USA 1998;95:11229–11234 [CrossRef][PubMed]
    [Google Scholar]
  73. Landi A, Iannucci V, Nuffel AV, Meuwissen P, Verhasselt B. One protein to rule them all: modulation of cell surface receptors and molecules by HIV Nef. Curr HIV Res 2011;9:496–504 [CrossRef][PubMed]
    [Google Scholar]
  74. Münch J, Rajan D, Schindler M, Specht A, Rücker E et al. Nef-mediated enhancement of virion infectivity and stimulation of viral replication are fundamental properties of primate lentiviruses. J Virol 2007;81:13852–13864 [CrossRef][PubMed]
    [Google Scholar]
  75. Rosa A, Chande A, Ziglio S, de Sanctis V, Bertorelli R et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature 2015;526:212–217 [CrossRef][PubMed]
    [Google Scholar]
  76. Usami Y, Wu Y, Göttlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature 2015;526:218–223 [CrossRef][PubMed]
    [Google Scholar]
  77. Trautz B, Wiedemann H, Lüchtenborg C, Pierini V, Kranich J et al. The host-cell restriction factor SERINC5 restricts HIV-1 infectivity without altering the lipid composition and organization of viral particles. J Biol Chem 2017;292:13702–13713 [CrossRef][PubMed]
    [Google Scholar]
  78. Sood C, Marin M, Chande A, Pizzato M, Melikyan GB. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J Biol Chem 2017;292:6014–6026 [CrossRef][PubMed]
    [Google Scholar]
  79. Zhang X, Zhou T, Yang J, Lin Y, Shi J et al. Identification of SERINC5-001 as the predominant spliced isoform for HIV-1 restriction. J Virol 2017;91:e00137-17 [CrossRef][PubMed]
    [Google Scholar]
  80. Pizzato M. MLV glycosylated-Gag is an infectivity factor that rescues Nef-deficient HIV-1. Proc Natl Acad Sci USA 2010;107:9364–9369 [CrossRef][PubMed]
    [Google Scholar]
  81. Pillemer EA, Kooistra DA, Witte ON, Weissman IL. Monoclonal antibody to the amino-terminal L sequence of murine leukemia virus glycosylated gag polyproteins demonstrates their unusual orientation in the cell membrane. J Virol 1986;57:413–421[PubMed]
    [Google Scholar]
  82. Usami Y, Popov S, Göttlinger HG. The Nef-like effect of murine leukemia virus glycosylated gag on HIV-1 infectivity is mediated by its cytoplasmic domain and depends on the AP-2 adaptor complex. J Virol 2014;88:3443–3454 [CrossRef][PubMed]
    [Google Scholar]
  83. McNatt MW, Zang T, Hatziioannou T, Bartlett M, Fofana IB et al. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog 2009;5:e1000300 [CrossRef][PubMed]
    [Google Scholar]
  84. Sawyer SL, Emerman M, Malik HS. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2004;2:e275 [CrossRef][PubMed]
    [Google Scholar]
  85. Sawyer SL, Wu LI, Emerman M, Malik HS. Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 2005;102:2832–2837 [CrossRef][PubMed]
    [Google Scholar]
  86. Murrell B, Vollbrecht T, Guatelli J, Wertheim JO. The Evolutionary Histories of Antiretroviral Proteins SERINC3 and SERINC5 Do Not Support an Evolutionary Arms Race in Primates. J Virol 2016;JVI.00972-16
    [Google Scholar]
  87. Beitari S, Ding S, Pan Q, Finzi A, Liang C. Effect of HIV-1 Env on SERINC5 Antagonism. J Virol 2017;91:e02214-1616 [CrossRef][PubMed]
    [Google Scholar]
  88. Li MM, Lau Z, Cheung P, Aguilar EG, Schneider WM et al. TRIM25 Enhances the Antiviral Action of Zinc-Finger Antiviral Protein (ZAP). PLoS Pathog 2017;13:e1006145 [CrossRef][PubMed]
    [Google Scholar]
  89. Gao G, Guo X, Goff SP. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 2002;297:1703–1706 [CrossRef][PubMed]
    [Google Scholar]
  90. Bick MJ, Carroll JW, Gao G, Goff SP, Rice CM et al. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 2003;77:11555–11562 [CrossRef][PubMed]
    [Google Scholar]
  91. Kerns JA, Emerman M, Malik HS. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet 2008;4:e21 [CrossRef][PubMed]
    [Google Scholar]
  92. Mao R, Nie H, Cai D, Zhang J, Liu H et al. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 2013;9:e1003494 [CrossRef][PubMed]
    [Google Scholar]
  93. Müller S, Möller P, Bick MJ, Wurr S, Becker S et al. Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 2007;81:2391–2400 [CrossRef][PubMed]
    [Google Scholar]
  94. Wang X, Tu F, Zhu Y, Gao G. Zinc-finger antiviral protein inhibits XMRV infection. PLoS One 2012;7:e39159 [CrossRef][PubMed]
    [Google Scholar]
  95. Zhang Y, Burke CW, Ryman KD, Klimstra WB. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J Virol 2007;81:11246–11255 [CrossRef][PubMed]
    [Google Scholar]
  96. Zhu Y, Chen G, Lv F, Wang X, Ji X et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA 2011;108:15834–15839 [CrossRef][PubMed]
    [Google Scholar]
  97. Xuan Y, Gong D, Qi J, Han C, Deng H et al. ZAP inhibits murine gammaherpesvirus 68 ORF64 expression and is antagonized by RTA. J Virol 2013;87:2735–2743 [CrossRef][PubMed]
    [Google Scholar]
  98. Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH. The Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition. PLoS Genet 2015;11:e1005252 [CrossRef][PubMed]
    [Google Scholar]
  99. Zhu Y, Wang X, Goff SP, Gao G. Translational repression precedes and is required for ZAP-mediated mRNA decay. Embo J 2012;31:4236–4246 [CrossRef][PubMed]
    [Google Scholar]
  100. Gack MU, Shin YC, Joo CH, Urano T, Liang C et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007;446:916–920 [CrossRef][PubMed]
    [Google Scholar]
  101. Urano T, Saito T, Tsukui T, Fujita M, Hosoi T et al. Efp targets 14-3-3σ for proteolysis and promotes breast tumour growth. Nature 2002;417:871–875 [CrossRef][PubMed]
    [Google Scholar]
  102. Zou W, Zhang DE. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem 2006;281:3989–3994 [CrossRef][PubMed]
    [Google Scholar]
  103. Erazo A, Goff SP. Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction. Retrovirology 2015;12:57 [CrossRef][PubMed]
    [Google Scholar]
  104. Kula A, Guerra J, Knezevich A, Kleva D, Myers MP et al. Characterization of the HIV-1 RNA associated proteome identifies Matrin 3 as a nuclear cofactor of Rev function. Retrovirology 2011;8:60 [CrossRef][PubMed]
    [Google Scholar]
  105. Salton M, Elkon R, Borodina T, Davydov A, Yaspo ML et al. Matrin 3 binds and stabilizes mRNA. PLoS One 2011;6:e23882 [CrossRef][PubMed]
    [Google Scholar]
  106. Belgrader P, Dey R, Berezney R. Molecular cloning of matrin 3. A 125-kilodalton protein of the nuclear matrix contains an extensive acidic domain. J Biol Chem 1991;266:9893–9899[PubMed]
    [Google Scholar]
  107. Erazo A, Yee MB, Banfield BW, Kinchington PR. The alphaherpesvirus US3/ORF66 protein kinases direct phosphorylation of the nuclear matrix protein matrin 3. J Virol 2011;85:568–581 [CrossRef][PubMed]
    [Google Scholar]
  108. Yedavalli VS, Jeang KT. Matrin 3 is a co-factor for HIV-1 Rev in regulating post-transcriptional viral gene expression. Retrovirology 2011;8:61 [CrossRef][PubMed]
    [Google Scholar]
  109. Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 2008;452:116–119 [CrossRef][PubMed]
    [Google Scholar]
  110. Brouwer R, Allmang C, Raijmakers R, van Aarssen Y, Egberts WV et al. Three novel components of the human exosome. J Biol Chem 2001;276:6177–6184 [CrossRef][PubMed]
    [Google Scholar]
  111. Law LM, Albin OR, Carroll JW, Jones CT, Rice CM et al. Identification of a dominant negative inhibitor of human zinc finger antiviral protein reveals a functional endogenous pool and critical homotypic interactions. J Virol 2010;84:4504–4512 [CrossRef][PubMed]
    [Google Scholar]
  112. Chen S, Xu Y, Zhang K, Wang X, Sun J et al. Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA. Nat Struct Mol Biol 2012;19:430–435 [CrossRef][PubMed]
    [Google Scholar]
  113. Takata MA, Gonçalves-Carneiro D, Zang TM, Soll SJ, York A et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 2017;550:124 [CrossRef][PubMed]
    [Google Scholar]
  114. Abdel-Mohsen M, Raposo RA, Deng X, Li M, Liegler T et al. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology 2013;10:106 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001026
Loading
/content/journal/jgv/10.1099/jgv.0.001026
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error