1887

Abstract

Identification and cloning of genes as well as biochemical characterization of the gene products were carried out for two novel endolysins of pseudo T-even lytic bacteriophages RB43 and RB49, which represent different myovirus groups of the subfamily Tevenvirinae. Genes RB43ORF159c and RB49р102 were cloned in E. coli cells, and their products were purified to electrophoretic homogeneity with an up to 80 % yield of total activity. In respect to substrate specificity, both enzymes were found to be lytic l-alanoyl-d-glutamate peptidases belonging to the M15 family. The pH optimum functioning of both endolysins was within the range 7.0–9.0, whereas the optimal values of ionic strength were different for the two proteins (25 mM vs 100 mM for the RB43 and RB49 endolysins respectively). Both peptidases were thermally resistant, with the RB43 endolysin being more stable (it restored 81 % of enzyme activity and 96 % of secondary structure after a 10 min heating at 90 °C) than its RB49 counterpart (27 and 77% respectively). The possible origin of genes of lytic l-alanoyl-d-glutamate peptidases of myoviruses as a result of horizontal transfer in the variable parts of genomes between unrelated phages having a common host is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001014
2018-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/3/402.html?itemId=/content/journal/jgv/10.1099/jgv.0.001014&mimeType=html&fmt=ahah

References

  1. Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 2015; 5: e1062590 [CrossRef] [PubMed]
    [Google Scholar]
  2. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R. Learning from bacteriophages – advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 2012; 13: 699– 722 [CrossRef] [PubMed]
    [Google Scholar]
  3. Keary R, McAuliffe O, Ross RP, Hill C, O’Mahony J et al. Bacteriophages and their endolysins for control of pathogenic bacteria. In Mendez-Vilas A. (editor) Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education Badajoz: Formatex Research Center; 2013; pp. 1028– 1040
    [Google Scholar]
  4. Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 2012; 7: 1147– 1171 [CrossRef] [PubMed]
    [Google Scholar]
  5. Young R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 1992; 56: 430– 481 [PubMed]
    [Google Scholar]
  6. Young R. Phage lysis: three steps, three choices, one outcome. J Microbiol 2014; 52: 243– 258 [CrossRef] [PubMed]
    [Google Scholar]
  7. Pritchard DG, Dong S, Baker JR, Engler JA. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 2004; 150: 2079– 2087 [CrossRef] [PubMed]
    [Google Scholar]
  8. Mikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA et al. Identification and characterization of the metal ion-dependent l-alanoyl-d-glutamate peptidase encoded by bacteriophage T5. Febs J 2009; 276: 7329– 7342 [CrossRef] [PubMed]
    [Google Scholar]
  9. Dumon-Seignovert L, Cariot G, Vuillard L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif 2004; 37: 203– 206 [CrossRef] [PubMed]
    [Google Scholar]
  10. Noel D, Nikaido K, Ames GF. A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 1979; 18: 4159– 4165 [CrossRef] [PubMed]
    [Google Scholar]
  11. Caldentey J, Bamford DH. The lytic enzyme of the Pseudomonas phage φ6. Purification and biochemical characterization. Biochim Biophys Acta 1992; 1159: 44– 50 [CrossRef] [PubMed]
    [Google Scholar]
  12. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2016; 44: D343– D350 [CrossRef] [PubMed]
    [Google Scholar]
  13. Prokhorov DA, Mikoulinskaia GV, Molochkov NV, Uversky VN, Kutyshenko VP. High-resolution NMR structure of a Zn2+ -containing form of the bacteriophage T5 l-alanyl- d-glutamate peptidase. RSC Adv 2015; 5: 41041– 41049 [CrossRef]
    [Google Scholar]
  14. Shavrina MS, Zimin AA, Molochkov NV, Chernyshov SV, Machulin AV et al. In vitro study of the antibacterial effect of the bacteriophage T5 thermostable endolysin on Escherichia coli cells. J Appl Microbiol 2016; 121: 1282– 1290 [CrossRef] [PubMed]
    [Google Scholar]
  15. Schmelcher M, Waldherr F, Loessner MJ. Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution. Appl Microbiol Biotechnol 2012; 93: 633– 643 [CrossRef] [PubMed]
    [Google Scholar]
  16. Heselpoth RD, Owens JM, Nelson DC. Quantitative analysis of the thermal stability of the gamma phage endolysin PlyG: a biophysical and kinetic approach to assaying therapeutic potential. Virology 2015; 477: 125– 132 [CrossRef] [PubMed]
    [Google Scholar]
  17. Bustamante N, Rico-Lastres P, García E, García P, Menéndez M. Thermal stability of Cpl-7 endolysin from the Streptococcus pneumoniae bacteriophage Cp-7; cell wall-targeting of its CW_7 motifs. PLoS One 2012; 7: e46654 [CrossRef] [PubMed]
    [Google Scholar]
  18. Zhang H, Zhang C, Wang H, Yan YX, Sun J. A novel prophage lysin Ply5218 with extended lytic activity and stability against Streptococcus suis infection. FEMS Microbiol Lett 2016; 363: fnw186 [CrossRef] [PubMed]
    [Google Scholar]
  19. Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R et al. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against Gram-negative pathogens in presence of weak acids. PLoS One 2014; 9: e108376 [CrossRef] [PubMed]
    [Google Scholar]
  20. Larsen KS, Auld DS. Carboxypeptidase A: mechanism of zinc inhibition. Biochemistry 1989; 28: 9620– 9625 [CrossRef] [PubMed]
    [Google Scholar]
  21. Welker NE. Structure of the cell wall of Bacillus stearothermophiluys: mode of action of a thermophilic bacteriophage lytic enzyme. J Bacteriol 1971; 107: 697– 703 [PubMed]
    [Google Scholar]
  22. Yanai A, Kato K, Beppu T, Arima K. Bacteriophage-induced lytic enzyme which hydrolyzes l-alanine-d-glutamic acid peptide bond in peptidoglycan. Biochem Biophys Res Commun 1976; 68: 1146– 1152 [CrossRef] [PubMed]
    [Google Scholar]
  23. Loessner MJ, Wendlinger G, Scherer S. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 1995; 16: 1231– 1241 [CrossRef] [PubMed]
    [Google Scholar]
  24. Fukushima T, Yao Y, Kitajima T, Yamamoto H, Sekiguchi J. Characterization of new l,d-endopeptidase gene product CwlK (previous YcdD) that hydrolyzes peptidoglycan in Bacillus subtilis. Mol Genet Genomics 2007; 278: 371– 383 [CrossRef] [PubMed]
    [Google Scholar]
  25. Son B, Yun J, Lim JA, Shin H, Heu S et al. Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4. BMC Microbiol 2012; 12: 33 [CrossRef] [PubMed]
    [Google Scholar]
  26. Maciejewska B, Roszniowski B, Espaillat A, Kęsik-Szeloch A, Majkowska-Skrobek G et al. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol 2017; 101: 673– 684 [CrossRef] [PubMed]
    [Google Scholar]
  27. Monod C, Repoila F, Kutateladze M, Tétart F, Krisch HM. The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4. J Mol Biol 1997; 267: 237– 249 [CrossRef] [PubMed]
    [Google Scholar]
  28. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P et al. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 2009; 9: 224 [CrossRef] [PubMed]
    [Google Scholar]
  29. Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C et al. Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 2006; 361: 46– 68 [CrossRef] [PubMed]
    [Google Scholar]
  30. Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD. Genetic diversity among five T4-like bacteriophages. Virol J 2006; 3: 30 [CrossRef] [PubMed]
    [Google Scholar]
  31. Desplats C, Krisch HM. The diversity and evolution of the T4-type bacteriophages. Res Microbiol 2003; 154: 259– 267 [CrossRef] [PubMed]
    [Google Scholar]
  32. Filée J, Bapteste E, Susko E, Krisch HM. A selective barrier to horizontal gene transfer in the T4-type bacteriophages that has preserved a core genome with the viral replication and structural genes. Mol Biol Evol 2006; 23: 1688– 1696 [CrossRef] [PubMed]
    [Google Scholar]
  33. Comeau AM, Bertrand C, Letarov A, Tétart F, Krisch HM. Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 2007; 362: 384– 396 [CrossRef] [PubMed]
    [Google Scholar]
  34. Comeau AM, Arbiol C, Krisch HM. Composite conserved promoter-terminator motifs (PeSLs) that mediate modular shuffling in the diverse T4-like myoviruses. Genome Biol Evol 2014; 6: 1611– 1619 [CrossRef] [PubMed]
    [Google Scholar]
  35. Arbiol C, Comeau AM, Kutateladze M, Adamia R, Krisch HM. Mobile regulatory cassettes mediate modular shuffling in T4-type phage genomes. Genome Biol Evol 2010; 2: 140– 152 [CrossRef] [PubMed]
    [Google Scholar]
  36. Letarov AV, Krisch HM. The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages. Ecol Evol 2013; 3: 3628– 3635 [CrossRef] [PubMed]
    [Google Scholar]
  37. Cheng Q, Nelson D, Zhu S, Fischetti VA. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother 2005; 49: 111– 117 [CrossRef] [PubMed]
    [Google Scholar]
  38. Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger JG et al. A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother 2011; 55: 738– 744 [CrossRef] [PubMed]
    [Google Scholar]
  39. Schmelcher M, Powell AM, Camp MJ, Pohl CS, Donovan DM. Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis. Appl Microbiol Biotechnol 2015; 99: 8475– 8486 [CrossRef] [PubMed]
    [Google Scholar]
  40. Briers Y, Walmagh M, van Puyenbroeck V, Cornelissen A, Cenens W et al. Engineered endolysin-based "Artilysins" to combat multidrug-resistant Gram-negative pathogens. MBio 2014; 5: e01379-14 [CrossRef] [PubMed]
    [Google Scholar]
  41. Lim JA, Shin H, Kang DH, Ryu S. Characterization of endolysin from a Salmonella typhimurium-infecting bacteriophage SPN1S. Res Microbiol 2012; 163: 233– 241 [CrossRef] [PubMed]
    [Google Scholar]
  42. Walmagh M, Briers Y, dos Santos SB, Azeredo J, Lavigne R. Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1. PLoS One 2012; 7: e36991 [CrossRef] [PubMed]
    [Google Scholar]
  43. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev 1992; 56: 395– 411 [PubMed]
    [Google Scholar]
  44. Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 2000; 287: 252– 260 [CrossRef] [PubMed]
    [Google Scholar]
  45. Streshinskaia GM, Naumova IB, Panina LI. [Chemical composition of the cell wall of Streptomyces chrysomallus which produces the antibiotic aurantin]. Mikrobiologiia 1979; 48: 814– 819 [PubMed]
    [Google Scholar]
  46. Riordan JF, Vallee BL. Acetylation. Methods Enzymol 1967; 11: 565– 570 [Crossref]
    [Google Scholar]
  47. Ward JB. The chain length of the glycans in bacterial cell walls. Biochem J 1973; 133: 395– 398 [CrossRef] [PubMed]
    [Google Scholar]
  48. Park JT, Johnson MJ. A submicrodetermination of glucose. J Biol Chem 1949; 181: 149– 151 [PubMed]
    [Google Scholar]
  49. Ghuysen JM, Tipper DJ, Strominger JL. Enzymes that degrade bacterial cell walls. Methods Enzymol 1966; 8: 685– 711 [Crossref]
    [Google Scholar]
  50. Warburg O, Christian W. Isolierung und Kristallisation des Garungsferments Enolase. Biochem Z 1941; 310: 384– 421
    [Google Scholar]
  51. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680– 685 [CrossRef] [PubMed]
    [Google Scholar]
  52. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389– 3402 [CrossRef] [PubMed]
    [Google Scholar]
  53. Papadopoulos JS, Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 2007; 23: 1073– 1079 [CrossRef] [PubMed]
    [Google Scholar]
  54. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  55. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  56. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8: 275– 282 [CrossRef] [PubMed]
    [Google Scholar]
  57. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [Crossref]
    [Google Scholar]
  58. Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med 2008; 29: 258– 289 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001014
Loading
/content/journal/jgv/10.1099/jgv.0.001014
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error