1887

Abstract

Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000981
2017-11-24
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/12/2993.html?itemId=/content/journal/jgv/10.1099/jgv.0.000981&mimeType=html&fmt=ahah

References

  1. World Health Organization Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition Switzerland: WHO Press; 2009
    [Google Scholar]
  2. World Health Organization Dengue and Severe Dengue 2015
    [Google Scholar]
  3. Dalrymple NA, Mackow ER. Roles for endothelial cells in dengue virus infection. Adv Virol 2012; 2012: 1– 8 [CrossRef] [PubMed]
    [Google Scholar]
  4. Rathakrishnan A, Wang SM, Hu Y, Khan AM, Ponnampalavanar S et al. Cytokine expression profile of dengue patients at different phases of illness. PLoS One 2012; 7: e52215 [CrossRef] [PubMed]
    [Google Scholar]
  5. Sellahewa KH. Pathogenesis of dengue haemorrhagic fever and its impact on case management. ISRN Infect Dis 2013; 2013: 1– 6 [CrossRef]
    [Google Scholar]
  6. Lei HY, Yeh TM, Liu HS, Lin YS, Chen SH et al. Immunopathogenesis of dengue virus infection. J Biomed Sci 2001; 8: 377– 388 [CrossRef] [PubMed]
    [Google Scholar]
  7. Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 2006; 193: 1078– 1088 [CrossRef] [PubMed]
    [Google Scholar]
  8. Conceição TM, El-Bacha T, Villas-Bôas CS, Coello G, Ramírez J et al. Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response. J Infect 2010; 60: 65– 75 [CrossRef] [PubMed]
    [Google Scholar]
  9. Ubol S, Masrinoul P, Chaijaruwanich J, Kalayanarooj S, Charoensirisuthikul T et al. Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever. J Infect Dis 2008; 197: 1459– 1467 [CrossRef] [PubMed]
    [Google Scholar]
  10. Thomas E, John M, Kanish B. Mucocutaneous manifestations of dengue fever. Indian J Dermatol 2010; 55: 79– 85 [CrossRef]
    [Google Scholar]
  11. Chlebicki MP, Ang B, Barkham T, Laude A. Retinal hemorrhages in 4 patients with dengue fever. Emerg Infect Dis 2005; 11: 770– 772 [CrossRef] [PubMed]
    [Google Scholar]
  12. CDC Dengue Clinical Guidance 2014
    [Google Scholar]
  13. Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 2004; 189: 1411– 1418 [CrossRef] [PubMed]
    [Google Scholar]
  14. Salgado DM, Eltit JM, Mansfield K, Panqueba C, Castro D et al. Heart and skeletal muscle are targets of dengue virus infection. Pediatr Infect Dis J 2010; 29: 238– 242 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kyle JL, Beatty PR, Harris E. Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 2007; 195: 1808– 1817 [CrossRef] [PubMed]
    [Google Scholar]
  16. Noisakran S, Onlamoon N, Songprakhon P, Hsiao HM, Chokephaibulkit K et al. Cells in dengue virus infection in vivo. Adv Virol 2010; 2010: 1– 15 [CrossRef] [PubMed]
    [Google Scholar]
  17. Michiels C. Endothelial cell functions. J Cell Physiol 2003; 196: 430– 443 [CrossRef]
    [Google Scholar]
  18. Danese S, Dejana E, Fiocchi C. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 2007; 178: 6017– 6022 [CrossRef] [PubMed]
    [Google Scholar]
  19. Dalrymple NA, Mackow ER. Endothelial cells elicit immune-enhancing responses to dengue virus infection. J Virol 2012; 86: 6408– 6415 [CrossRef] [PubMed]
    [Google Scholar]
  20. Brown MG, Hermann LL, Issekutz AC, Marshall JS, Rowter D et al. Dengue virus infection of mast cells triggers endothelial cell activation. J Virol 2011; 85: 1145– 1150 [CrossRef] [PubMed]
    [Google Scholar]
  21. Sahaphong S, Riengrojpitak S, Bhamarapravati N, Chirachariyavej T. Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health 1980; 11: 194– 204 [PubMed]
    [Google Scholar]
  22. Póvoa TF, Alves AM, Oliveira CA, Nuovo GJ, Chagas VL et al. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One 2014; 9: e83386 [CrossRef] [PubMed]
    [Google Scholar]
  23. Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence 2013; 4: 525– 536 [CrossRef] [PubMed]
    [Google Scholar]
  24. Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 2015; 7: 304ra142 [CrossRef] [PubMed]
    [Google Scholar]
  25. Liu P, Woda M, Ennis FA, Libraty DH. Dengue virus infection differentially regulates endothelial barrier function over time through type I interferon effects. J Infect Dis 2009; 200: 191– 201 [CrossRef] [PubMed]
    [Google Scholar]
  26. Dewi BE, Takasaki T, Kurane I. In vitro assessment of human endothelial cell permeability: effects of inflammatory cytokines and dengue virus infection. J Virol Methods 2004; 121: 171– 180 [CrossRef] [PubMed]
    [Google Scholar]
  27. Appanna R, Wang SM, Ponnampalavanar SA, Lum LC, Sekaran SD. Cytokine factors present in dengue patient sera induces alterations of junctional proteins in human endothelial cells. Am J Trop Med Hyg 2012; 87: 936– 942 [CrossRef] [PubMed]
    [Google Scholar]
  28. Srikiatkhachorn A. Plasma leakage in dengue haemorrhagic fever. Thromb Haemost 2009; 102: 1042– 1049 [CrossRef] [PubMed]
    [Google Scholar]
  29. Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I. IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol 2004; 85: 1801– 1813 [CrossRef] [PubMed]
    [Google Scholar]
  30. Basu A, Chaturvedi UC. Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 2008; 53: 287– 299 [CrossRef] [PubMed]
    [Google Scholar]
  31. Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M. Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 1998; 161: 6338– 6346 [PubMed]
    [Google Scholar]
  32. Limonta D, Capó V, Torres G, Pérez AB, Guzmán MG. Apoptosis in tissues from fatal dengue shock syndrome. J Clin Virol 2007; 40: 50– 54 [CrossRef] [PubMed]
    [Google Scholar]
  33. Long X, Li Y, Qi Y, Xu J, Wang Z et al. XAF1 contributes to dengue virus-induced apoptosis in vascular endothelial cells. Faseb J 2013; 27: 1062– 1073 [CrossRef] [PubMed]
    [Google Scholar]
  34. Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 2009; 22: 564– 581 [CrossRef] [PubMed]
    [Google Scholar]
  35. Srikiatkhachorn A, Krautrachue A, Ratanaprakarn W, Wongtapradit L, Nithipanya N et al. Natural history of plasma leakage in dengue hemorrhagic fever: a serial ultrasonographic study. Pediatr Infect Dis J 2007; 26: 283– 290 [CrossRef] [PubMed]
    [Google Scholar]
  36. Wang CC, Liu SF, Liao SC, Lee IK, Liu JW et al. Acute respiratory failure in adult patients with dengue virus infection. Am J Trop Med Hyg 2007; 77: 151– 158 [PubMed]
    [Google Scholar]
  37. Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S et al. Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J Infect Dis 1999; 179: 755– 762 [CrossRef] [PubMed]
    [Google Scholar]
  38. Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 2002; 186: 1165– 1168 [CrossRef] [PubMed]
    [Google Scholar]
  39. Callaway JB, Smith SA, Widman DG, Mckinnon KP, Scholle F et al. Source and purity of dengue-viral preparations impact requirement for enhancing antibody to induce elevated IL-1β secretion: a primary human monocyte model. PLoS One 2015; 10: e0136708 [CrossRef] [PubMed]
    [Google Scholar]
  40. Kanthong N, Laosutthipong C, Flegel TW. Response to Dengue virus infections altered by cytokine-like substances from mosquito cell cultures. BMC Microbiol 2010; 10: 290 [CrossRef] [PubMed]
    [Google Scholar]
  41. BioPhysics A. ECIS Theory 2015
    [Google Scholar]
  42. Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC et al. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci Transl Med 2015; 7: 284ra59 [CrossRef] [PubMed]
    [Google Scholar]
  43. Bleau C, Filliol A, Samson M, Lamontagne L. Brain invasion by Mouse Hepatitis Virus depends on impairment of tight junctions and Beta Interferon production in brain microvascular endothelial cells. J Virol 2015; 89: 9896– 9908 [CrossRef] [PubMed]
    [Google Scholar]
  44. Deng X, Yan Z, Luo Y, Xu J, Cheng F et al. In vitro modeling of human bocavirus 1 infection of polarized primary human airway epithelia. J Virol 2013; 87: 4097– 4102 [CrossRef] [PubMed]
    [Google Scholar]
  45. Ong SP, Ng ML, Chu JJ. Differential regulation of angiopoietin 1 and angiopoietin 2 during dengue virus infection of human umbilical vein endothelial cells: implications for endothelial hyperpermeability. Med Microbiol Immunol 2013; 202: 437– 452 [CrossRef] [PubMed]
    [Google Scholar]
  46. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29: 313– 326 [CrossRef] [PubMed]
    [Google Scholar]
  47. Fried JR, Gibbons RV, Kalayanarooj S, Thomas SJ, Srikiatkhachorn A et al. Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl Trop Dis 2010; 4: e617 [CrossRef] [PubMed]
    [Google Scholar]
  48. Lim WK, Mathur R, Koh A, Yeoh R, Chee SP. Ocular manifestations of dengue fever. Ophthalmology 2004; 111: 2057– 2064 [CrossRef] [PubMed]
    [Google Scholar]
  49. Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW et al. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol 1997; 138: 1117– 1124 [CrossRef] [PubMed]
    [Google Scholar]
  50. Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F. Endothelial cell heterogeneity and organ specificity. J Hematother Stem Cell Res 2002; 11: 81– 90 [CrossRef] [PubMed]
    [Google Scholar]
  51. Nishiura H, Halstead SB. Natural history of dengue virus (DENV)-1 and DENV-4 infections: reanalysis of classic studies. J Infect Dis 2007; 195: 1007– 1013 [CrossRef] [PubMed]
    [Google Scholar]
  52. Yung CF, Lee KS, Thein TL, Tan LK, Gan VC et al. Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, Singapore. Am J Trop Med Hyg 2015; 92: 999– 1005 [CrossRef] [PubMed]
    [Google Scholar]
  53. Ohainle M, Harris E. Dengue pathogenesis: viral factors. Dengue and Dengue Hemorrhagic Fever Oxfordshire: CABI; 2014; pp. 229– 246
    [Google Scholar]
  54. Rico-Hesse R. Dengue virus virulence and transmission determinants. Curr Top Microbiol Immunol 2010; 338: 45– 55 [CrossRef] [PubMed]
    [Google Scholar]
  55. Balmaseda A, Hammond SN, Pérez L, Tellez Y, Saborío SI et al. Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 2006; 74: 449– 456 [PubMed]
    [Google Scholar]
  56. Huang J, Li Y, Qi Y, Zhang Y, Zhang L et al. Coordinated regulation of autophagy and apoptosis determines endothelial cell fate during Dengue virus type 2 infection. Mol Cell Biochem 2014; 397: 157– 165 [CrossRef] [PubMed]
    [Google Scholar]
  57. Wang WK, Chao DY, Kao CL, Wu HC, Liu YC et al. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 2003; 305: 330– 338 [CrossRef] [PubMed]
    [Google Scholar]
  58. Fox A, Le NM, Simmons CP, Wolbers M, Wertheim HF et al. Immunological and viral determinants of dengue severity in hospitalized adults in Ha Noi, Viet Nam. PLoS Negl Trop Dis 2011; 5: e967 [CrossRef] [PubMed]
    [Google Scholar]
  59. Chi L, Li Y, Stehno-Bittel L, Gao J, Morrison DC et al. Interleukin-6 production by endothelial cells via stimulation of protease-activated receptors is amplified by endotoxin and tumor necrosis factor-alpha. J Interferon Cytokine Res 2001; 21: 231– 240 [CrossRef] [PubMed]
    [Google Scholar]
  60. Hober D, Poli L, Roblin B, Gestas P, Chungue E et al. Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg 1993; 48: 324– 331 [CrossRef] [PubMed]
    [Google Scholar]
  61. Hoffmann G, Schloesser M, Czechowski M, Schobersberger W, Fürhapter C et al. Tumor necrosis factor-alpha gene expression and release in cultured human dermal microvascular endothelial cells. Exp Dermatol 2004; 13: 113– 119 [CrossRef] [PubMed]
    [Google Scholar]
  62. del Moral-Hernández O, Martínez-Hernández NE, Mosso-Pani MA, Hernández-Sotelo D, Illades-Aguiar B et al. Association DENV1 and DENV2 infection with high serum levels of soluble thrombomodulin and VEGF in patients with dengue fever and dengue hemorrhagic fever. Int J Clin Exp Med 2014; 7: 370– 378 [PubMed]
    [Google Scholar]
  63. Frank PG, Lisanti MP. ICAM-1: role in inflammation and in the regulation of vascular permeability. Am J Physiol Heart Circ Physiol 2008; 295: H926– H927 [CrossRef] [PubMed]
    [Google Scholar]
  64. Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010; 72: 463– 493 [CrossRef] [PubMed]
    [Google Scholar]
  65. Minshall RD, Malik AB. Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 2006; 176: 107– 144 [PubMed] [Crossref]
    [Google Scholar]
  66. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006; 86: 279– 367 [CrossRef] [PubMed]
    [Google Scholar]
  67. van Itallie CM, Fanning AS, Holmes J, Anderson JM. Occludin is required for cytokine-induced regulation of tight junction barriers. J Cell Sci 2010; 123: 2844– 2852 [CrossRef] [PubMed]
    [Google Scholar]
  68. van Itallie CM, Fanning AS, Bridges A, Anderson JM. ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell 2009; 20: 3930– 3940 [CrossRef] [PubMed]
    [Google Scholar]
  69. Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 2008; 28: 223– 232 [CrossRef] [PubMed]
    [Google Scholar]
  70. Chen HR, Chuang YC, Lin YS, Liu HS, Liu CC et al. Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLoS Negl Trop Dis 2016; 10: e0004828 [CrossRef] [PubMed]
    [Google Scholar]
  71. Dewi BE, Takasaki T, Kurane I. Peripheral blood mononuclear cells increase the permeability of dengue virus-infected endothelial cells in association with downregulation of vascular endothelial cadherin. J Gen Virol 2008; 89: 642– 652 [CrossRef] [PubMed]
    [Google Scholar]
  72. Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V. Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. J Proteome Res 2009; 8: 2551– 2562 [CrossRef] [PubMed]
    [Google Scholar]
  73. Blecharz KG, Drenckhahn D, Förster C. Glucocorticoids cause VE-cadherin upregulation and cytoskeletal rearrangements in the blood-brain barrier endothelial cEND cell line. Cell Communication and Signaling 2009; 7: A95 [CrossRef]
    [Google Scholar]
  74. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 2008; 10: 923– 934 [CrossRef] [PubMed]
    [Google Scholar]
  75. Yuan J, Garcia J, Hales C, Rich S, Archer S et al. Textbook of Pulmonary Vascular Disease Berlin: Springer Science & Business Media; 2011; [Crossref]
    [Google Scholar]
  76. Muller WA. The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J Leukoc Biol 1995; 57: 523– 528 [PubMed]
    [Google Scholar]
  77. Mei H, Campbell JM, Paddock CM, Lertkiatmongkol P, Mosesson MW et al. Regulation of endothelial cell barrier function by antibody-driven affinity modulation of platelet endothelial cell adhesion molecule-1 (PECAM-1). J Biol Chem 2014; 289: 20836– 20844 [CrossRef] [PubMed]
    [Google Scholar]
  78. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998; 273: 29745– 29753 [CrossRef] [PubMed]
    [Google Scholar]
  79. Wang JL, Zhang JL, Chen W, Xu XF, Gao N et al. Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl Trop Dis 2010; 4: e809 [CrossRef] [PubMed]
    [Google Scholar]
  80. Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 2014; 355: 607– 619 [CrossRef] [PubMed]
    [Google Scholar]
  81. Findley MK, Koval M. Regulation and roles for claudin-family tight junction proteins. IUBMB Life 2009; 61: 431– 437 [CrossRef] [PubMed]
    [Google Scholar]
  82. Günzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev 2013; 93: 525– 569 [CrossRef] [PubMed]
    [Google Scholar]
  83. Song A, Nikolcheva T, Krensky AM. Transcriptional regulation of RANTES expression in T lymphocytes. Immunol Rev 2000; 177: 236– 245 [CrossRef] [PubMed]
    [Google Scholar]
  84. Smoller BR, Krueger J. Detection of cytokine-induced protein gamma-immune protein-10 (gamma-IP10) in atypical melanocytic proliferations. J Am Acad Dermatol 1991; 25: 627– 631 [CrossRef] [PubMed]
    [Google Scholar]
  85. Szulcek R, Bogaard HJ, van Nieuw Amerongen GP. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. J Vis Exp 2014; 85: 51300 [CrossRef] [PubMed]
    [Google Scholar]
  86. Ashby WJ, Zijlstra A. Established and novel methods of interrogating two-dimensional cell migration. Integr Biol 2012; 4: 1338– 1350 [CrossRef] [PubMed]
    [Google Scholar]
  87. Lappalainen S, Vesikari T, Blazevic V. Simple and efficient ultrafiltration method for purification of rotavirus VP6 oligomeric proteins. Arch Virol 2016; 161: 3219– 3223 [CrossRef] [PubMed]
    [Google Scholar]
  88. Song Z, Dong C, Wang L, Chen DE, Bi G et al. A novel method for purifying bluetongue virus with high purity by co-immunoprecipitation with agarose protein A. Virol J 2010; 7: 126 [CrossRef] [PubMed]
    [Google Scholar]
  89. Sciencell Human Pulmonary Microvascular Endothelial Cells Sciencell Research Laboratories;
    [Google Scholar]
  90. Systems C. Human Retinal Microvascular Endothelial Cells 2015
    [Google Scholar]
  91. Dorovini-Zis K, Prameya R, Huynh HK. Human brain endothelial cells. In Nag S. (editor) The Blood-Brain Barrier: Biology and Research Protocols Springer Science & Business Media; 2003; pp. 327– 336
    [Google Scholar]
  92. Timiryasova TM, Bonaparte MI, Luo P, Zedar R, Hu BT et al. Optimization and validation of a plaque reduction neutralization test for the detection of neutralizing antibodies to four serotypes of dengue virus used in support of dengue vaccine development. Am J Trop Med Hyg 2013; 88: 962– 970 [CrossRef] [PubMed]
    [Google Scholar]
  93. Medina F, Medina JF, Colón C, Vergne E, Santiago GA et al. Dengue virus: isolation, propagation, quantification, and storage. Curr Protoc Microbiol 2012; Chapter 15: 15D.12.11-15D.12.24 [CrossRef] [PubMed]
    [Google Scholar]
  94. Yong YK, Thayan R, Chong HT, Tan CT, Sekaran SD. Rapid detection and serotyping of dengue virus by multiplex RT-PCR and real-time SYBR green RT-PCR. Singapore Med J 2007; 48: 662– 668 [PubMed]
    [Google Scholar]
  95. Tiruppathi C, Malik AB, del Vecchio PJ, Keese CR, Giaever I. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci USA 1992; 89: 7919– 7923 [CrossRef] [PubMed]
    [Google Scholar]
  96. Dudek SM, Muñoz NM, Desai A, Osan CM, Meliton AY et al. Group V phospholipase A2 mediates barrier disruption of human pulmonary endothelial cells caused by LPS in vitro. Am J Respir Cell Mol Biol 2011; 44: 361– 368 [CrossRef] [PubMed]
    [Google Scholar]
  97. Giaever I, Keese CR. Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci USA 1991; 88: 7896– 7900 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000981
Loading
/content/journal/jgv/10.1099/jgv.0.000981
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error