1887

Abstract

The rapid spread of Zika virus (ZIKV) in the Americas raised many questions about the role of Culex quinquefasciatus mosquitoes in transmission, in addition to the key role played by the vector Aedes aegypti. Here we analysed the competence of Cx. quinquefasciatus (with or without Wolbachia endosymbionts) for a ZIKV isolate. We also examined the induction of RNA interference pathways after viral challenge and the production of small virus-derived RNAs. We did not observe any infection nor such small virus-derived RNAs, regardless of the presence or absence of Wolbachia. Thus, Cx. quinquefasciatus does not support ZIKV replication and Wolbachia is not involved in producing this phenotype. In short, these mosquitoes are very unlikely to play a role in transmission of ZIKV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000949
2017-10-27
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/2/258.html?itemId=/content/journal/jgv/10.1099/jgv.0.000949&mimeType=html&fmt=ahah

References

  1. Boeuf P, Drummer HE, Richards JS, Scoullar MJ, Beeson JG. The global threat of Zika virus to pregnancy: epidemiology, clinical perspectives, mechanisms, and impact. BMC Med 2016;14:112 [CrossRef][PubMed]
    [Google Scholar]
  2. Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K et al. Assessing the global threat from Zika virus. Science 2016;353:aaf8160 [CrossRef][PubMed]
    [Google Scholar]
  3. Wikan N, Smith DR. Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis 2016;16:e119-e126 [CrossRef][PubMed]
    [Google Scholar]
  4. Gatherer D, Kohl A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol 2016;97:269–273 [CrossRef][PubMed]
    [Google Scholar]
  5. Melo AS, Aguiar RS, Amorim MM, Arruda MB, Melo FO et al. Congenital Zika virus infection: beyond neonatal microcephaly. J Am Med Assoc Neurol 2016;73:1407–1416 [CrossRef][PubMed]
    [Google Scholar]
  6. Demir T, Kilic S. Zika virus: a new arboviral public health problem. Folia Microbiol 2016;61:523–527 [CrossRef][PubMed]
    [Google Scholar]
  7. Esposito S, Longo MR. Guillain-Barré syndrome. Autoimmun Rev 2017;16:96–101 [CrossRef][PubMed]
    [Google Scholar]
  8. Possas C, Brasil P, Marzochi MC, Tanuri A, Martins RM et al. Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination – a review. Mem Inst Oswaldo Cruz 2017;112:319–327 [CrossRef][PubMed]
    [Google Scholar]
  9. Rather IA, Kumar S, Bajpai VK, Lim J, Park YH. Prevention and control strategies to counter ZIKA epidemic. Front Microbiol 2017;8:305 [CrossRef][PubMed]
    [Google Scholar]
  10. Diallo D, Sall AA, Diagne CT, Faye O, Faye O et al. Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLoS One 2014;9:e109442 [CrossRef][PubMed]
    [Google Scholar]
  11. Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV et al. Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Negl Trop Dis 2014;8:e2636 [CrossRef][PubMed]
    [Google Scholar]
  12. Ferreira-de-Brito A, Ribeiro IP, Miranda RM, Fernandes RS, Campos SS et al. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem Inst Oswaldo Cruz 2016;111:655–658 [CrossRef][PubMed]
    [Google Scholar]
  13. Guerbois M, Fernandez-Salas I, Azar SR, Danis-Lozano R, Alpuche-Aranda CM et al. Outbreak of Zika virus infection, Chiapas state, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J Infect Dis 2016;214:1349–1356 [CrossRef][PubMed]
    [Google Scholar]
  14. Althouse BM, Vasilakis N, Sall AA, Diallo M, Weaver SC et al. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl Trop Dis 2016;10:e0005055 [CrossRef][PubMed]
    [Google Scholar]
  15. Gardner L, Chen N, Sarkar S. Vector status of Aedes species determines geographical risk of autochthonous Zika virus establishment. PLoS Negl Trop Dis 2017;11:e0005487 [CrossRef][PubMed]
    [Google Scholar]
  16. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R et al. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis 2016;10:e0004543 [CrossRef][PubMed]
    [Google Scholar]
  17. Fernandes RS, Campos SS, Ferreira-de-Brito A, Miranda RM, Barbosa da Silva KA et al. Culex quinquefasciatus from Rio de Janeiro is not competent to transmit the local Zika virus. PLoS Negl Trop Dis 2016;10:e0004993 [CrossRef][PubMed]
    [Google Scholar]
  18. Ciota AT, Bialosuknia SM, Zink SD, Brecher M, Ehrbar DJ et al. Effects of Zika virus strain and Aedes mosquito species on vector competence. Emerg Infect Dis 2017;23:1110–1117 [CrossRef][PubMed]
    [Google Scholar]
  19. Liu Z, Zhou T, Lai Z, Zhang Z, Jia Z et al. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes as Zika virus vectors, China. Emerg Infect Dis 2017;23:1085–1091 [CrossRef][PubMed]
    [Google Scholar]
  20. Weger-Lucarelli J, Rückert C, Chotiwan N, Nguyen C, Garcia Luna SM et al. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl Trop Dis 2016;10:e0005101 [CrossRef][PubMed]
    [Google Scholar]
  21. Roundy CM, Azar SR, Rossi SL, Huang JH, Leal G et al. Variation in Aedes aegypti mosquito competence for Zika virus transmission. Emerg Infect Dis 2017;23:625–632 [CrossRef][PubMed]
    [Google Scholar]
  22. Richard V, Paoaafaite T, Cao-Lormeau VM. Vector competence of French polynesian Aedes aegypti and Aedes polynesiensis for Zika virus. PLoS Negl Trop Dis 2016;10:e0005024 [CrossRef][PubMed]
    [Google Scholar]
  23. Wong PS, Li MZ, Chong CS, Ng LC, Tan CH. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis 2013;7:e2348 [CrossRef][PubMed]
    [Google Scholar]
  24. Dutra HL, Rocha MN, Dias FB, Mansur SB, Caragata EP et al. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 2016;19:771–774 [CrossRef][PubMed]
    [Google Scholar]
  25. Boccolini D, Toma L, Di Luca M, Severini F, Romi R et al. Experimental investigation of the susceptibility of Italian Culex pipiens mosquitoes to Zika virus infection. Euro Surveill 2016;21:1–3 [CrossRef][PubMed]
    [Google Scholar]
  26. Lourenço-de-Oliveira R, Failloux AB. Lessons learned on Zika virus vectors. PLoS Negl Trop Dis 2017;11:e0005511 [CrossRef][PubMed]
    [Google Scholar]
  27. Farajollahi A, Fonseca DM, Kramer LD, Marm Kilpatrick A. "Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 2011;11:1577–1585 [CrossRef][PubMed]
    [Google Scholar]
  28. Turell MJ. Members of the Culex pipiens complex as vectors of viruses. J Am Mosq Control Assoc 2012;28:123–126 [CrossRef][PubMed]
    [Google Scholar]
  29. Heitmann A, Jansen S, Lühken R, Leggewie M, Badusche M et al. Experimental transmission of Zika virus by mosquitoes from central Europe. Euro Surveill 2017;22:pii: 30437 [CrossRef][PubMed]
    [Google Scholar]
  30. Kenney JL, Romo H, Duggal NK, Tzeng WP, Burkhalter KL et al. Transmission incompetence of Culex quinquefasciatus and Culex pipiens pipiens from North America for Zika Virus. Am J Trop Med Hyg 2017;96:1235–1240 [CrossRef][PubMed]
    [Google Scholar]
  31. Richard V, Paoaafaite T, Cao-Lormeau VM. Acquittal of Culex quinquefasciatus in transmitting Zika virus during the French Polynesian outbreak. Acta Trop 2017;173:200–201 [CrossRef][PubMed]
    [Google Scholar]
  32. Amraoui F, Atyame-Nten C, Vega-Rúa A, Lourenço-de-Oliveira R, Vazeille M et al. Culex mosquitoes are experimentally unable to transmit Zika virus. Euro Surveill 2016;21:1–3 [CrossRef][PubMed]
    [Google Scholar]
  33. Hart CE, Roundy CM, Azar SR, Huang JH, Yun R et al. Zika virus vector competency of mosquitoes, Gulf Coast, United States. Emerg Infect Dis 2017;23:559–560 [CrossRef][PubMed]
    [Google Scholar]
  34. Dodson BL, Rasgon JL. Vector competence of Anopheles and Culex mosquitoes for Zika virus. PeerJ 2017;5:e3096 [CrossRef][PubMed]
    [Google Scholar]
  35. Hall-Mendelin S, Pyke AT, Moore PR, Mackay IM, McMahon JL et al. Assessment of local mosquito species incriminates Aedes aegypti as the potential vector of Zika virus in Australia. PLoS Negl Trop Dis 2016;10:e0004959 [CrossRef][PubMed]
    [Google Scholar]
  36. Aliota MT, Peinado SA, Osorio JE, Bartholomay LC. Culex pipiens and Aedes triseriatus mosquito susceptibility to Zika virus. Emerg Infect Dis 2016;22:1857–1859 [CrossRef][PubMed]
    [Google Scholar]
  37. Guo XX, Li CX, Deng YQ, Xing D, Liu QM et al. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerg Microbes Infect 2016;5:e102 [CrossRef][PubMed]
    [Google Scholar]
  38. Guedes DR, Paiva MH, Donato MM, Barbosa PP, Krokovsky L et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg Microbes Infect 2017;6:e69 [CrossRef][PubMed]
    [Google Scholar]
  39. Olson KE, Blair CD. Arbovirus-mosquito interactions: RNAi pathway. Curr Opin Virol 2015;15:119–126 [CrossRef][PubMed]
    [Google Scholar]
  40. Blair CD, Olson KE. The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2015;7:820–843 [CrossRef][PubMed]
    [Google Scholar]
  41. Donald CL, Kohl A, Schnettler E. New insights into control of arbovirus replication and spread by insect RNA interference pathways. Insects 2012;3:511–531 [CrossRef][PubMed]
    [Google Scholar]
  42. Huang YS, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects 2017;8:21 [CrossRef]
    [Google Scholar]
  43. Benelli G, Jeffries CL, Walker T. Biological control of mosquito vectors: past, present, and future. Insects 2016;7:52 [CrossRef][PubMed]
    [Google Scholar]
  44. Caragata EP, Dutra HL, Moreira LA. Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia. Trends Parasitol 2016;32:207–218 [CrossRef][PubMed]
    [Google Scholar]
  45. Caragata EP, Dutra HL, O'Neill SL, Moreira LA. Zika control through the bacterium Wolbachia pipientis. Future Microbiol 2016;11:1499–1502 [CrossRef][PubMed]
    [Google Scholar]
  46. Sinkins SP. Wolbachia and arbovirus inhibition in mosquitoes. Future Microbiol 2013;8:1249–1256 [CrossRef][PubMed]
    [Google Scholar]
  47. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 2008;42:683–707 [CrossRef][PubMed]
    [Google Scholar]
  48. Tan CH, Wong PJ, Li MI, Yang H, Ng LC et al. wMel limits Zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg. PLoS Negl Trop Dis 2017;11:e0005496 [CrossRef][PubMed]
    [Google Scholar]
  49. Caragata EP, Dutra HL, Moreira LA. Inhibition of Zika virus by Wolbachia in Aedes aegypti. Microb Cell 2016;3:293–295 [CrossRef][PubMed]
    [Google Scholar]
  50. Aliota MT, Peinado SA, Velez ID, Osorio JE. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci Rep 2016;6:28792 [CrossRef][PubMed]
    [Google Scholar]
  51. Yen JH, Barr AR. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol 1973;22:242–250 [CrossRef][PubMed]
    [Google Scholar]
  52. Georghiou GP, Metcalf RL, Gidden FE. Carbamate-resistance in mosquitos. Selection of Culex pipiens fatigans Wiedemann (=C. quinquefasciatus Say) for resistance to Baygon. Bull World Health Organ 1966;35:691–708[PubMed]
    [Google Scholar]
  53. Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol Biol Evol 2011;28:2761–2772 [CrossRef][PubMed]
    [Google Scholar]
  54. Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux AB. Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One 2009;4:e5895 [CrossRef][PubMed]
    [Google Scholar]
  55. Aguiar ER, Olmo RP, Paro S, Ferreira FV, de Faria IJ et al. Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Res 2016;44:3477–3478 [CrossRef][PubMed]
    [Google Scholar]
  56. Hang J, Klein TA, Kim HC, Yang Y, Jima DD et al. Genome sequences of five arboviruses in field-captured mosquitoes in a unique rural environment of South Korea. Genome Announc 2016;4:e01644-15 [CrossRef][PubMed]
    [Google Scholar]
  57. Li CX, Shi M, Tian JH, Lin XD, Kang YJ et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 2015;4:5979 [CrossRef][PubMed]
    [Google Scholar]
  58. Parrish NF, Fujino K, Shiromoto Y, Iwasaki YW, Ha H et al. piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals. RNA 2015;21:1691–1703 [CrossRef][PubMed]
    [Google Scholar]
  59. Lequime S, Lambrechts L. Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses. Virus Evol 2017;3:vew035 [CrossRef][PubMed]
    [Google Scholar]
  60. Suzuki Y, Frangeul L, Dickson LB, Blanc H, Verdier Y et al. Uncovering the repertoire of endogenous flaviviral elements in Aedes mosquito genomes. J Virol 2017;91:e00571-17 [CrossRef][PubMed]
    [Google Scholar]
  61. Fernandes RS, Campos SS, Ribeiro PS, Raphael LM, Bonaldo MC et al. Culex quinquefasciatus from areas with the highest incidence of microcephaly associated with Zika virus infections in the northeast region of Brazil are refractory to the virus. Mem Inst Oswaldo Cruz 2017;112:577–579 [CrossRef][PubMed]
    [Google Scholar]
  62. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 2009;360:2536–2543 [CrossRef][PubMed]
    [Google Scholar]
  63. Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S et al. Zika virus in Gabon (Central Africa)–2007: a new threat from Aedes albopictus?. PLoS Negl Trop Dis 2014;8:e2681 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000949
Loading
/content/journal/jgv/10.1099/jgv.0.000949
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error