1887

Abstract

Peste des petits ruminants virus (PPRV) is a significant pathogen of small ruminants and is prevalent in much of Africa, the Near and Middle East and Asia. Despite the availability of an efficacious and cheap live-attenuated vaccine, the virus has continued to spread, with its range stretching from Morocco in the west to China and Mongolia in the east. Some of the world’s poorest communities rely on small ruminant farming for subsistence and the continued endemicity of PPRV is a constant threat to their livelihoods. Moreover, PPRV’s effects on the world’s population are felt broadly across many economic, agricultural and social situations. This far-reaching impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organisation for Animal Health (OIE) to develop a global strategy for the eradication of this virus and its disease. PPRV is a morbillivirus and, given the experience of these organizations in eradicating the related rinderpest virus, the eradication of PPRV should be feasible. However, there are many critical areas where basic and applied virological research concerning PPRV is lacking. The purpose of this review is to highlight areas where new research could be performed in order to guide and facilitate the eradication programme. These areas include studies on disease transmission and epidemiology, the existence of wildlife reservoirs and the development of next-generation vaccines and diagnostics. With the support of the international virology community, the successful eradication of PPRV can be achieved.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000944
2017-10-12
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/11/2635.html?itemId=/content/journal/jgv/10.1099/jgv.0.000944&mimeType=html&fmt=ahah

References

  1. Banyard AC, Parida S, Batten C, Oura C, Kwiatek O et al. Global distribution of peste des petits ruminants virus and prospects for improved diagnosis and control. J Gen Virol 2010; 91: 2885– 2897 [CrossRef] [PubMed]
    [Google Scholar]
  2. Albina E, Kwiatek O, Minet C, Lancelot R, Servan de Almeida R et al. Peste des petits ruminants the next eradicated animal disease?. Vet Microbiol 2013; 165: 38– 44 [CrossRef] [PubMed]
    [Google Scholar]
  3. Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S et al. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses 2014; 6: 2287– 2327 [CrossRef] [PubMed]
    [Google Scholar]
  4. OIE FAO 2015; Global strategy for the control and eradication of PPR. World Organisation for Animal Health (OIE); Food and Agriculture Organization of the United Nations (FAO)2015 Contract No.: ISBN 978-92-9044-989-8; ISBN 978-92-5-108733-6 www.fao.org/3/a-i4460e.pdf
  5. Robinson TP, Pozzi F. Mapping Supply and Demand for Animal-Source Foods to 2030 Rome: FAO; 2011
    [Google Scholar]
  6. Jones BA, Rich KM, Mariner JC, Anderson J, Jeggo M et al. The economic impact of eradicating peste des petits ruminants: a benefit-cost analysis. PLoS One 2016; 11: e0149982 [CrossRef] [PubMed]
    [Google Scholar]
  7. Buczkowski H, Muniraju M, Parida S, Banyard AC. Morbillivirus vaccines: recent successes and future hopes. Vaccine 2014; 32: 3155– 3161 [CrossRef] [PubMed]
    [Google Scholar]
  8. Diallo A. Control of peste des petits ruminants: classical and new generation vaccines. Dev Biol 2003; 114: 113– 119 [PubMed]
    [Google Scholar]
  9. Santhamani R, Singh RP, Njeumi F. Peste des petits ruminants diagnosis and diagnostic tools at a glance: perspectives on global control and eradication. Arch Virol 2016; 161: 2953– 2967 [CrossRef] [PubMed]
    [Google Scholar]
  10. EFSA Panel on Animal Health and Welfare (AHAW) Scientific Opinion on peste des petits ruminants. EFSA Journal 2015; 13: 3985 [Crossref]
    [Google Scholar]
  11. Baron MD, Diallo A, Lancelot R, Libeau G. Peste des petits ruminants virus. Adv Virus Res 2016; 95: 1– 42 [CrossRef] [PubMed]
    [Google Scholar]
  12. Munir M. Peste des Petits Ruminants Virus Berlin Heidelberg: Springer-Verlag; 2015; [Crossref]
    [Google Scholar]
  13. Diallo A, Taylor WP, Lefèvre PC, Provost A. [Attenuation of a strain of rinderpest virus: potential homologous live vaccine]. Rev Elev Med Vet Pays Trop 1989; 42: 311– 319 [PubMed]
    [Google Scholar]
  14. Siddappa M, Gandham RK, Sarsani V, Mishra BP, Mishra B et al. Whole-genome sequence of sungri/96 vaccine strain of peste des petits ruminants virus. Genome Announc 2014; 2: e00056-14 [CrossRef] [PubMed]
    [Google Scholar]
  15. Shaila MS, Shamaki D, Forsyth MA, Diallo A, Goatley L et al. Geographic distribution and epidemiology of peste des petits ruminants virus. Virus Res 1996; 43: 149– 153 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kwiatek O, Ali YH, Saeed IK, Khalafalla AI, Mohamed OI et al. Asian lineage of peste des petits ruminants virus, Africa. Emerg Infect Dis 2011; 17: 1223– 1231 [CrossRef] [PubMed]
    [Google Scholar]
  17. Muniraju M, El Harrak M, Bao J, Ramasamy Parthiban AB, Banyard AC et al. Complete genome sequence of a peste des petits ruminants virus recovered from an alpine goat during an outbreak in Morocco in 2008. Genome Announc 2013; 1: e00096-13 [CrossRef] [PubMed]
    [Google Scholar]
  18. Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011; 480: 530– 533 [CrossRef] [PubMed]
    [Google Scholar]
  19. Tatsuo H, Ono N, Tanaka K, Yanagi Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000; 406: 893– 897 [CrossRef] [PubMed]
    [Google Scholar]
  20. Laksono BM, de Vries RD, Mcquaid S, Duprex WP, de Swart RL. Measles virus host invasion and pathogenesis. Viruses 2016; 8: 210 [CrossRef] [PubMed]
    [Google Scholar]
  21. Hammouchi M, Loutfi C, Sebbar G, Touil N, Chaffai N et al. Experimental infection of alpine goats with a Moroccan strain of peste des petits ruminants virus (PPRV). Vet Microbiol 2012; 160: 240– 244 [CrossRef] [PubMed]
    [Google Scholar]
  22. Truong T, Boshra H, Embury-Hyatt C, Nfon C, Gerdts V et al. Peste des petits ruminants virus tissue tropism and pathogenesis in sheep and goats following experimental infection. PLoS One 2014; 9: e87145 [CrossRef] [PubMed]
    [Google Scholar]
  23. Wernike K, Eschbaumer M, Breithaupt A, Maltzan J, Wiesner H et al. Experimental infection of sheep and goats with a recent isolate of peste des petits ruminants virus from Kurdistan. Vet Microbiol 2014; 172: 140– 145 [CrossRef] [PubMed]
    [Google Scholar]
  24. Couacy-Hymann E, Bodjo C, Danho T, Libeau G, Diallo A. Evaluation of the virulence of some strains of peste-des-petits-ruminants virus (PPRV) in experimentally infected West African dwarf goats. Vet J 2007; 173: 178– 183 [CrossRef] [PubMed]
    [Google Scholar]
  25. Diop M, Sarr J, Libeau G. Evaluation of novel diagnostic tools for peste des petits ruminants virus in naturally infected goat herds. Epidemiol Infect 2005; 133: 711– 717 [CrossRef] [PubMed]
    [Google Scholar]
  26. Heaton MP, Clawson ML, Chitko-Mckown CG, Leymaster KA, Smith TP et al. Reduced lentivirus susceptibility in sheep with TMEM154 mutations. PLoS Genet 2012; 8: e1002467 [CrossRef] [PubMed]
    [Google Scholar]
  27. Birch J, Juleff N, Heaton MP, Kalbfleisch T, Kijas J et al. Characterization of ovine Nectin-4, a novel peste des petits ruminants virus receptor. J Virol 2013; 87: 4756– 4761 [CrossRef] [PubMed]
    [Google Scholar]
  28. Abubakar M, Rajput ZI, Arshed MJ, Sarwar G, Ali Q. Evidence of peste des petits ruminants virus (PPRV) infection in Sindh Ibex (Capra aegagrus blythi) in Pakistan as confirmed by detection of antigen and antibody. Trop Anim Health Prod 2011; 43: 745– 747 [CrossRef] [PubMed]
    [Google Scholar]
  29. Bao J, Wang Z, Li L, Wu X, Sang P et al. Detection and genetic characterization of peste des petits ruminants virus in free-living bharals (Pseudois nayaur) in Tibet, China. Res Vet Sci 2011; 90: 238– 240 [CrossRef] [PubMed]
    [Google Scholar]
  30. Munir M. Role of wild small ruminants in the epidemiology of peste des petits ruminants. Transbound Emerg Dis 2014; 61: 411– 424 [CrossRef] [PubMed]
    [Google Scholar]
  31. Abubakar M, Mahapatra M, Muniraju M, Arshed MJ, Khan EH et al. Serological detection of antibodies to peste des petits ruminants virus in large ruminants. Transbound Emerg Dis 2017; 64: 513– 519 [CrossRef] [PubMed]
    [Google Scholar]
  32. Balamurugan V, Krishnamoorthy P, Veeregowda BM, Sen A, Rajak KK et al. Seroprevalence of Peste des petits ruminants in cattle and buffaloes from Southern Peninsular India. Trop Anim Health Prod 2012; 44: 301– 306 [CrossRef] [PubMed]
    [Google Scholar]
  33. Gür S, Albayrak H. Seroprevalance of peste des petits ruminants (PPR) in goitered gazelle (Gazella subgutturosa subgutturosa) in Turkey. J Wildl Dis 2010; 46: 673– 677 [CrossRef] [PubMed]
    [Google Scholar]
  34. Mahapatra M, Sayalel K, Muniraju M, Eblate E, Fyumagwa R et al. Spillover of peste des petits ruminants virus from domestic to wild ruminants in the serengeti ecosystem, Tanzania. Emerg Infect Dis 2015; 21: 2230– 2234 [CrossRef] [PubMed]
    [Google Scholar]
  35. Woma TY, Kalla DJ, Ekong PS, Ularamu HG, Chollom SC et al. Serological evidence of camel exposure to peste des petits ruminants virus (PPRV) in Nigeria. Trop Anim Health Prod 2015; 47: 603– 606 [CrossRef] [PubMed]
    [Google Scholar]
  36. Ratta B, Pokhriyal M, Singh SK, Kumar A, Saxena M et al. Detection of peste des petits ruminants virus (PPRV) genome from nasal swabs of dogs. Curr Microbiol 2016; 73: 99– 103 [CrossRef] [PubMed]
    [Google Scholar]
  37. Khalafalla AI, Saeed IK, Ali YH, Abdurrahman MB, Kwiatek O et al. An outbreak of peste des petits ruminants (PPR) in camels in the Sudan. Acta Trop 2010; 116: 161– 165 [CrossRef] [PubMed]
    [Google Scholar]
  38. Liess B, Plowright W. Studies on the pathogenesis of rinderpest in experimental cattle. I. Correlation of clinical signs, viraemia and virus excretion by various routes. J Hyg 1964; 62: 81– 100 [CrossRef] [PubMed]
    [Google Scholar]
  39. de Vries RD, Duprex WP, de Swart RL. Morbillivirus infections: an introduction. Viruses 2015; 7: 699– 706 [CrossRef] [PubMed]
    [Google Scholar]
  40. Anderson RM, May RM. Immunisation and herd immunity. Lancet 1990; 335: 641– 645 [CrossRef] [PubMed]
    [Google Scholar]
  41. Fox JP. Herd immunity and measles. Rev Infect Dis 1983; 5: 463– 466 [CrossRef] [PubMed]
    [Google Scholar]
  42. Roeder PL, Taylor WP. Mass vaccination and herd immunity: cattle and buffalo. Rev Sci Tech 2007; 26: 253– 263 [PubMed] [Crossref]
    [Google Scholar]
  43. Kivaria FM, Kwiatek O, Kapaga AM, Swai ES, Libeau G et al. The incursion, persistence and spread of peste des petits ruminants in Tanzania: epidemiological patterns and predictions. Onderstepoort J Vet Res 2013; 80: 593 [CrossRef] [PubMed]
    [Google Scholar]
  44. Zahur AB, Ullah A, Irshad H, Farooq MS, Hussain M et al. Epidemiological investigations of a peste des petits ruminants (PPR) outbreak in Afghan sheep in Pakistan. Pak Vet J 2009; 29: 174– 178
    [Google Scholar]
  45. Earn DJ, Rohani P, Bolker BM, Grenfell BT. A simple model for complex dynamical transitions in epidemics. Science 2000; 287: 667– 670 [CrossRef] [PubMed]
    [Google Scholar]
  46. Rashid H, Khandaker G, Booy R. Vaccination and herd immunity: what more do we know?. Curr Opin Infect Dis 2012; 25: 243– 249 [CrossRef] [PubMed]
    [Google Scholar]
  47. Banyard AC, Wang Z, Parida S. Peste des petits ruminants virus, eastern Asia. Emerg Infect Dis 2014; 20: 2176– 2178 [CrossRef] [PubMed]
    [Google Scholar]
  48. Mariner JC, House JA, Sollod AE, Stem C, van den Ende M et al. Comparison of the effect of various chemical stabilizers and lyophilization cycles on the thermostability of a Vero cell-adapted rinderpest vaccine. Vet Microbiol 1990; 21: 195– 209 [CrossRef] [PubMed]
    [Google Scholar]
  49. Sarkar J, Sreenivasa BP, Singh RP, Dhar P, Bandyopadhyay SK. Comparative efficacy of various chemical stabilizers on the thermostability of a live-attenuated peste des petits ruminants (PPR) vaccine. Vaccine 2003; 21: 4728– 4735 [CrossRef] [PubMed]
    [Google Scholar]
  50. Mariner JC, Gachanja J, Tindih SH, Toye P. A thermostable presentation of the live, attenuated peste des petits ruminants vaccine in use in Africa and Asia. Vaccine 2017; 35: 3773– 3779 [CrossRef] [PubMed]
    [Google Scholar]
  51. Liu F, Wu X, Liu W, Li L, Wang Z. Current perspectives on conventional and novel vaccines against peste des petits ruminants. Vet Res Commun 2014; 38: 307– 322 [CrossRef] [PubMed]
    [Google Scholar]
  52. Herbert R, Baron J, Batten C, Baron M, Taylor G. Recombinant adenovirus expressing the haemagglutinin of peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR. Vet Res 2014; 45: 24 [CrossRef] [PubMed]
    [Google Scholar]
  53. Holzer B, Taylor G, Rajko-Nenow P, Hodgson S, Okoth E et al. Determination of the minimum fully protective dose of adenovirus-based DIVA vaccine against peste des petits ruminants virus challenge in East African goats. Vet Res 2016; 47: 20 [CrossRef] [PubMed]
    [Google Scholar]
  54. Qin J, Huang H, Ruan Y, Hou X, Yang S et al. A novel recombinant Peste des petits ruminants-canine adenovirus vaccine elicits long-lasting neutralizing antibody response against PPR in goats. PLoS One 2012; 7: e37170 [CrossRef] [PubMed]
    [Google Scholar]
  55. Rojas JM, Moreno H, Valcárcel F, Peña L, Sevilla N et al. Vaccination with recombinant adenoviruses expressing the peste des petits ruminants virus F or H proteins overcomes viral immunosuppression and induces protective immunity against PPRV challenge in sheep. PLoS One 2014; 9: e101226 [CrossRef] [PubMed]
    [Google Scholar]
  56. Chaudhary SS, Pandey KD, Singh RP, Verma PC, Gupta PK. A vero cell derived combined vaccine against sheep pox and peste des petits ruminants for sheep. Vaccine 2009; 27: 2548– 2553 [CrossRef] [PubMed]
    [Google Scholar]
  57. Chen W, Hu S, Qu L, Hu Q, Zhang Q et al. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep. Vaccine 2010; 28: 4742– 4750 [CrossRef] [PubMed]
    [Google Scholar]
  58. Hosamani M, Singh SK, Mondal B, Sen A, Bhanuprakash V et al. A bivalent vaccine against goat pox and Peste des Petits ruminants induces protective immune response in goats. Vaccine 2006; 24: 6058– 6064 [CrossRef] [PubMed]
    [Google Scholar]
  59. Caufour P, Rufael T, Lamien CE, Lancelot R, Kidane M et al. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity. Vaccine 2014; 32: 3772– 3779 [CrossRef] [PubMed]
    [Google Scholar]
  60. Buczkowski H, Parida S, Bailey D, Barrett T, Banyard AC. A novel approach to generating morbillivirus vaccines: negatively marking the rinderpest vaccine. Vaccine 2012; 30: 1927– 1935 [CrossRef] [PubMed]
    [Google Scholar]
  61. Hu Q, Chen W, Huang K, Baron MD, Bu Z. Rescue of recombinant peste des petits ruminants virus: creation of a GFP-expressing virus and application in rapid virus neutralization test. Vet Res 2012; 43: 48 [CrossRef] [PubMed]
    [Google Scholar]
  62. Muniraju M, Mahapatra M, Buczkowski H, Batten C, Banyard AC et al. Rescue of a vaccine strain of peste des petits ruminants virus: In vivo evaluation and comparison with standard vaccine. Vaccine 2015; 33: 465– 471 [CrossRef] [PubMed]
    [Google Scholar]
  63. Ozmen O, Kale M, Haligur M, Yavru S. Pathological, serological, and virological findings in sheep infected simultaneously with Bluetongue, Peste-des-petits-ruminants, and Sheeppox viruses. Trop Anim Health Prod 2009; 41: 951– 958 [CrossRef] [PubMed]
    [Google Scholar]
  64. Mondal SP, Yamage M. A retrospective study on the epidemiology of anthrax, foot and mouth disease, haemorrhagic septicaemia, peste des petits ruminants and rabies in Bangladesh, 2010-2012. PLoS One 2014; 9: e104435 [CrossRef] [PubMed]
    [Google Scholar]
  65. Lundervold M, Milner-Gulland EJ, O'Callaghan CJ, Hamblin C, Corteyn A et al. A serological survey of ruminant livestock in Kazakhstan during post-Soviet transitions in farming and disease control. Acta Vet Scand 2004; 45: 211– 224 [CrossRef] [PubMed]
    [Google Scholar]
  66. Avota E, Gassert E, Schneider-Schaulies S. Measles virus-induced immunosuppression: from effectors to mechanisms. Med Microbiol Immunol 2010; 199: 227– 237 [CrossRef] [PubMed]
    [Google Scholar]
  67. Heaney J, Cosby SL, Barrett T. Inhibition of host peripheral blood mononuclear cell proliferation ex vivo by Rinderpest virus. J Gen Virol 2005; 86: 3349– 3355 [CrossRef] [PubMed]
    [Google Scholar]
  68. Fakri F, Ghzal F, Daouam S, Elarkam A, Douieb L et al. Development and field application of a new combined vaccine against Peste des Petits Ruminants and Sheep Pox. Trials Vaccinol 2015; 4: 33– 37 [CrossRef]
    [Google Scholar]
  69. Baron J, Fishbourne E, Couacy-Hyman E, Abubakar M, Jones BA et al. Development and testing of a field diagnostic assay for peste des petits ruminants virus. Transbound Emerg Dis 2014; 61: 390– 396 [CrossRef] [PubMed]
    [Google Scholar]
  70. Logan N, Mcmonagle E, Drew AA, Takahashi E, Mcdonald M et al. Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies. Vaccine 2016; 34: 814– 822 [CrossRef] [PubMed]
    [Google Scholar]
  71. Logan N, Dundon WG, Diallo A, Baron MD, James Nyarobi M et al. Enhanced immunosurveillance for animal morbilliviruses using vesicular stomatitis virus (VSV) pseudotypes. Vaccine 2016; 34: 5736– 5743 [CrossRef] [PubMed]
    [Google Scholar]
  72. Baron J, Baron MD. Development of a helper cell-dependent form of peste des petits ruminants virus: a system for making biosafe antigen. Vet Res 2015; 46: 101 [CrossRef] [PubMed]
    [Google Scholar]
  73. Muñoz-Alía , Fernández-Muñoz R, Casasnovas JM, Porras-Mansilla R, Serrano-Pardo Á et al. Measles virus genetic evolution throughout an imported epidemic outbreak in a highly vaccinated population. Virus Res 2015; 196: 122– 127 [CrossRef] [PubMed]
    [Google Scholar]
  74. Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol 2011; 18: 135– 141 [CrossRef] [PubMed]
    [Google Scholar]
  75. Fulton BO, Sachs D, Beaty SM, Won ST, Lee B et al. Mutational analysis of measles virus suggests constraints on antigenic variation of the glycoproteins. Cell Rep 2015; 11: 1331– 1338 [CrossRef] [PubMed]
    [Google Scholar]
  76. Gardy JL, Naus M, Amlani A, Chung W, Kim H et al. Whole-genome sequencing of measles virus genotypes H1 and D8 during outbreaks of infection following the 2010 olympic winter games reveals viral transmission routes. J Infect Dis 2015; 212: 1574– 1578 [CrossRef] [PubMed]
    [Google Scholar]
  77. Penedos AR, Myers R, Hadef B, Aladin F, Brown KE. Assessment of the utility of whole genome sequencing of measles virus in the characterisation of outbreaks. PLoS One 2015; 10: e0143081 [CrossRef] [PubMed]
    [Google Scholar]
  78. Rota PA, Bankamp B. Whole-genome sequencing during measles outbreaks. J Infect Dis 2015; 212: 1529– 1530 [CrossRef] [PubMed]
    [Google Scholar]
  79. Bailey D, Banyard A, Dash P, Ozkul A, Barrett T. Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus. Virus Res 2005; 110: 119– 124 [CrossRef] [PubMed]
    [Google Scholar]
  80. Salami H, Croville G, Kwiatek O, Mariette J, Klopp C et al. Complete genome sequence of a field strain of peste des petits ruminants virus isolated during 2010–2014 epidemics in Senegal. Genome Announc 2014; 2: e00772-14 [CrossRef] [PubMed]
    [Google Scholar]
  81. Mariner JC, Roeder PL. Use of participatory epidemiology in studies of the persistence of lineage 2 rinderpest virus in East Africa. Vet Rec 2003; 152: 641– 647 [CrossRef] [PubMed]
    [Google Scholar]
  82. Holzer B, Hodgson S, Logan N, Willett B, Baron MD. Protection of cattle against rinderpest by vaccination with wild-type but not attenuated strains of peste des petits ruminants virus. J Virol 2016; 90: 5152– 5162 [CrossRef] [PubMed]
    [Google Scholar]
  83. Lloyd-Smith JO. Vacated niches, competitive release and the community ecology of pathogen eradication. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20120150 [CrossRef] [PubMed]
    [Google Scholar]
  84. Sakai K, Nagata N, Ami Y, Seki F, Suzaki Y et al. Lethal canine distemper virus outbreak in cynomolgus monkeys in Japan in 2008. J Virol 2013; 87: 1105– 1114 [CrossRef] [PubMed]
    [Google Scholar]
  85. Zhao J, Shi N, Sun Y, Martella V, Nikolin V et al. Pathogenesis of canine distemper virus in experimentally infected raccoon dogs, foxes, and minks. Antiviral Res 2015; 122: 1– 11 [CrossRef] [PubMed]
    [Google Scholar]
  86. Bieringer M, Han JW, Kendl S, Khosravi M, Plattet P et al. Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150. PLoS One 2013; 8: e57488 [CrossRef] [PubMed]
    [Google Scholar]
  87. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P et al. Bats host major mammalian paramyxoviruses. Nat Commun 2012; 3: 796 [CrossRef] [PubMed]
    [Google Scholar]
  88. Sharp CR, Nambulli S, Acciardo AS, Rennick LJ, Drexler JF et al. Chronic infection of domestic cats with feline Morbillivirus, United States. Emerg Infect Dis 2016; 22: 760– 762 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000944
Loading
/content/journal/jgv/10.1099/jgv.0.000944
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error