1887

Abstract

In 2012 and 2013, influenza virus genome sequences of two new influenza A virus (IAV) subtypes were discovered in bat specimens, but further characterization was largely impeded by the lack of infectious virus. With the identification of highly susceptible cell lines, reconstitution of infectious bat IAV by reverse genetics recently succeeded and allowed a first insight into the life cycle of these viruses. Although there is a certain degree of functional compatibility between bat and conventional influenza A virus proteins, there are striking differences, including receptor usage, polarity of infection and reassortment potential.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000927
2017-09-14
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/10/2393.html?itemId=/content/journal/jgv/10.1099/jgv.0.000927&mimeType=html&fmt=ahah

References

  1. Simonsen L. The global impact of influenza on morbidity and mortality. Vaccine 1999; 17: S3– S10 [CrossRef] [PubMed]
    [Google Scholar]
  2. Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 2010; 285: 28403– 28409 [CrossRef] [PubMed]
    [Google Scholar]
  3. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992; 56: 152– 179
    [Google Scholar]
  4. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus AD et al. Global patterns of influenza a virus in wild birds. Science 2006; 312: 384– 388 [CrossRef] [PubMed]
    [Google Scholar]
  5. Zhou J, Wang D, Gao R, Zhao B, Song J et al. Biological features of novel avian influenza A (H7N9) virus. Nature 2013; 499: 500– 503 [CrossRef] [PubMed]
    [Google Scholar]
  6. Gao R, Cao B, Hu Y, Feng Z, Wang D et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013; 368: 1888– 1897 [CrossRef] [PubMed]
    [Google Scholar]
  7. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009; 325: 197– 201 [CrossRef] [PubMed]
    [Google Scholar]
  8. Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 1989; 63: 4603– 4608 [PubMed]
    [Google Scholar]
  9. Scholtissek C, Rohde W, Von Hoyningen V, Rott R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 1978; 87: 13– 20 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kida H, Ito T, Yasuda J, Shimizu Y, Itakura C et al. Potential for transmission of avian influenza viruses to pigs. J Gen Virol 1994; 75: 2183– 2188 [CrossRef] [PubMed]
    [Google Scholar]
  11. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 2012; 109: 4269– 4274 [CrossRef] [PubMed]
    [Google Scholar]
  12. Tong S, Zhu X, Li Y, Shi M, Zhang J et al. New world bats harbor diverse influenza A viruses. PLoS Pathog 2013; 9: e1003657 [CrossRef] [PubMed]
    [Google Scholar]
  13. Li Q, Sun X, Li Z, Liu Y, Vavricka CJ et al. Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus. Proc Natl Acad Sci USA 2012; 109: 18897– 18902 [CrossRef] [PubMed]
    [Google Scholar]
  14. Sun X, Shi Y, Lu X, He J, Gao F et al. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep 2013; 3: 769– 778 [CrossRef] [PubMed]
    [Google Scholar]
  15. Zhu X, Yang H, Guo Z, Yu W, Carney PJ et al. Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site. Proc Natl Acad Sci USA 2012; 109: 18903– 18908 [CrossRef] [PubMed]
    [Google Scholar]
  16. Zhu X, Yu W, McBride R, Li Y, Chen LM et al. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci USA 2013; 110: 1458– 1463 [CrossRef] [PubMed]
    [Google Scholar]
  17. Ma W, García-Sastre A, Schwemmle M. Expected and unexpected features of the newly discovered bat influenza A-like viruses. PLoS Pathog 2015; 11: e1004819 [CrossRef] [PubMed]
    [Google Scholar]
  18. Moreira ÉA, Locher S, Kolesnikova L, Bolte H, Aydillo T et al. Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism. Proc Natl Acad Sci USA 2016; 133: 12797– 12802 [Crossref]
    [Google Scholar]
  19. Compans RW, Content J, Duesberg PH. Structure of the ribonucleoprotein of influenza virus. J Virol 1972; 10: 795– 800 [PubMed]
    [Google Scholar]
  20. Fodor E, Seong BL, Brownlee GG. Photochemical cross-linking of influenza A polymerase to its virion RNA promoter defines a polymerase binding site at residues 9 to 12 of the promoter. J Gen Virol 1993; 74: 1327– 1333 [CrossRef] [PubMed]
    [Google Scholar]
  21. Hsu MT, Parvin JD, Gupta S, Krystal M, Palese P. Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci USA 1987; 84: 8140– 8144 [CrossRef] [PubMed]
    [Google Scholar]
  22. Palese P, Schulman JL. Mapping of the influenza virus genome: identification of the hemagglutinin and the neuraminidase genes. Proc Natl Acad Sci USA 1976; 73: 2142– 2146 [CrossRef] [PubMed]
    [Google Scholar]
  23. Gerber M, Isel C, Moules V, Marquet R. Selective packaging of the influenza A genome and consequences for genetic reassortment. Trends Microbiol 2014; 22: 446– 455 [CrossRef] [PubMed]
    [Google Scholar]
  24. Desselberger U, Racaniello VR, Zazra JJ, Palese P. The 3' and 5'-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 1980; 8: 315– 328 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kim HJ, Fodor E, Brownlee GG, Seong BL. Mutational analysis of the RNA-fork model of the influenza A virus vRNA promoter in vivo. J Gen Virol 1997; 78: 353– 357 [CrossRef] [PubMed]
    [Google Scholar]
  26. Li X, Palese P. Mutational analysis of the promoter required for influenza virus virion RNA synthesis. J Virol 1992; 66: 4331– 4338 [PubMed]
    [Google Scholar]
  27. Lam TT, Wang J, Shen Y, Zhou B, Duan L et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 2013; 502: 241– 244 [CrossRef] [PubMed]
    [Google Scholar]
  28. Li C, Hatta M, Watanabe S, Neumann G, Kawaoka Y. Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J Virol 2008; 82: 11880– 11888 [CrossRef] [PubMed]
    [Google Scholar]
  29. Goto H, Muramoto Y, Noda T, Kawaoka Y. The genome-packaging signal of the influenza A virus genome comprises a genome incorporation signal and a genome-bundling signal. J Virol 2013; 87: 11316– 11322 [CrossRef] [PubMed]
    [Google Scholar]
  30. Fournier E, Moules V, Essere B, Paillart JC, Sirbat JD et al. Interaction network linking the human H3N2 influenza A virus genomic RNA segments. Vaccine 2012; 30: 7359– 7367 [CrossRef] [PubMed]
    [Google Scholar]
  31. Fournier E, Moules V, Essere B, Paillart JC, Sirbat JD et al. A supramolecular assembly formed by influenza A virus genomic RNA segments. Nucleic Acids Res 2012; 40: 2197– 2209 [CrossRef] [PubMed]
    [Google Scholar]
  32. Gavazzi C, Isel C, Fournier E, Moules V, Cavalier A et al. An in vitro network of intermolecular interactions between viral RNA segments of an avian H5N2 influenza A virus: comparison with a human H3N2 virus. Nucleic Acids Res 2013; 41: 1241– 1254 [CrossRef] [PubMed]
    [Google Scholar]
  33. Gavazzi C, Yver M, Isel C, Smyth RP, Rosa-Calatrava M et al. A functional sequence-specific interaction between influenza A virus genomic RNA segments. Proc Natl Acad Sci USA 2013; 110: 16604– 16609 [CrossRef] [PubMed]
    [Google Scholar]
  34. Juozapaitis M, Aguiar Moreira É, Mena I, Giese S, Riegger D et al. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus. Nat Commun 2014; 5: 4448 [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhou B, Ma J, Liu Q, Bawa B, Wang W et al. Characterization of uncultivable bat influenza virus using a replicative synthetic virus. PLoS Pathog 2014; 10: e1004420 [CrossRef] [PubMed]
    [Google Scholar]
  36. Yang J, Lee J, Ma J, Lang Y, Nietfeld J et al. Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus. J Gen Virol 2017; 98: 577– 584 [CrossRef] [PubMed]
    [Google Scholar]
  37. Poole DS, Yu S, Caì Y, Dinis JM, Müller MA et al. Influenza A virus polymerase is a site for adaptive changes during experimental evolution in bat cells. J Virol 2014; 88: 12572– 12585 [CrossRef] [PubMed]
    [Google Scholar]
  38. Turkington HL, Juozapaitis M, Kerry PS, Aydillo T, Ayllon J et al. Novel bat influenza virus NS1 proteins bind double-stranded RNA and antagonize host innate immunity. J Virol 2015; 89: 10696– 10701 [CrossRef] [PubMed]
    [Google Scholar]
  39. Zhao X, Tefsen B, Li Y, Qi J, Lu G et al. The NS1 gene from bat-derived influenza-like virus H17N10 can be rescued in influenza A PR8 backbone. J Gen Virol 2016; 97: 1797– 1806 [CrossRef] [PubMed]
    [Google Scholar]
  40. Moreira ÉA, Weber A, Bolte H, Kolesnikova L, Giese S et al. A conserved influenza A virus nucleoprotein code controls specific viral genome packaging. Nat Commun 2016; 7: 12861 [CrossRef] [PubMed]
    [Google Scholar]
  41. Harris HJ, Davis C, Mullins JG, Hu K, Goodall M et al. Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 2010; 285: 21092– 21102 [CrossRef] [PubMed]
    [Google Scholar]
  42. Okuyama-Dobashi K, Kasai H, Tanaka T, Yamashita A, Yasumoto J et al. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide. Sci Rep 2015; 5: 17047 [CrossRef] [PubMed]
    [Google Scholar]
  43. Schulze A, Mills K, Weiss TS, Urban S. Hepatocyte polarization is essential for the productive entry of the hepatitis B virus. Hepatology 2012; 55: 373– 383 [CrossRef] [PubMed]
    [Google Scholar]
  44. Vermeer PD, McHugh J, Rokhlina T, Vermeer DW, Zabner J et al. Vaccinia virus entry, exit, and interaction with differentiated human airway epithelia. J Virol 2007; 81: 9891– 9899 [CrossRef] [PubMed]
    [Google Scholar]
  45. Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ et al. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 1999; 274: 10219– 10226 [CrossRef] [PubMed]
    [Google Scholar]
  46. Ludlow M, Rennick LJ, Sarlang S, Skibinski G, McQuaid S et al. Wild-type measles virus infection of primary epithelial cells occurs via the basolateral surface without syncytium formation or release of infectious virus. J Gen Virol 2010; 91: 971– 979 [CrossRef] [PubMed]
    [Google Scholar]
  47. Rindler MJ, Ivanov IE, Plesken H, Rodriguez-Boulan E, Sabatini DD. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells. J Cell Biol 1984; 98: 1304– 1319 [CrossRef] [PubMed]
    [Google Scholar]
  48. Caì Y, SQ, Postnikova EN, Mazur S, Bernbaum JG et al. CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection. PLoS One 2014; 9: e112060 [CrossRef] [PubMed]
    [Google Scholar]
  49. Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y et al. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 1991; 182: 475– 485 [CrossRef] [PubMed]
    [Google Scholar]
  50. Air GM. Sequence relationships among the hemagglutinin genes of 12 subtypes of influenza A virus. Proc Natl Acad Sci USA 1981; 78: 7639– 7643 [CrossRef] [PubMed]
    [Google Scholar]
  51. Hoffmann M, Kruger N, Zmora P, Wrensch F, Herrler G et al. The hemagglutinin of bat-associated influenza viruses is activated by TMPRSS2 for pH-dependent entry into bat but not human cells. PLoS One 2016; 11: e0152134 [CrossRef] [PubMed]
    [Google Scholar]
  52. Zimmer G, Locher S, Berger Rentsch M, Halbherr SJ. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses. J Gen Virol 2014; 95: 1634– 1639 [CrossRef] [PubMed]
    [Google Scholar]
  53. Gambaryan AS, Tuzikov AB, Piskarev VE, Yamnikova SS, Lvov DK et al. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine). Virology 1997; 232: 345– 350 [CrossRef] [PubMed]
    [Google Scholar]
  54. Sauter NK, Bednarski MD, Wurzburg BA, Hanson JE, Whitesides GM et al. Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. Biochemistry 1989; 28: 8388– 8396 [CrossRef] [PubMed]
    [Google Scholar]
  55. Takemoto DK, Skehel JJ, Wiley DC. A surface plasmon resonance assay for the binding of influenza virus hemagglutinin to its sialic acid receptor. Virology 1996; 217: 452– 458 [CrossRef] [PubMed]
    [Google Scholar]
  56. Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 1981; 289: 366– 373 [CrossRef] [PubMed]
    [Google Scholar]
  57. Maruyama J, Nao N, Miyamoto H, Maeda K, Ogawa H et al. Characterization of the glycoproteins of bat-derived influenza viruses. Virology 2016; 488: 43– 50 [CrossRef] [PubMed]
    [Google Scholar]
  58. Cohen M, Zhang XQ, Senaati HP, Chen HW, Varki NM et al. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J 2013; 10: 321 [CrossRef] [PubMed]
    [Google Scholar]
  59. Air GM, Laver WG. The neuraminidase of influenza virus. Proteins 1989; 6: 341– 356 [CrossRef] [PubMed]
    [Google Scholar]
  60. Wu Y, Wu Y, Tefsen B, Shi Y, Gao GF. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 2014; 22: 183– 191 [CrossRef] [PubMed]
    [Google Scholar]
  61. Colman PM, Varghese JN, Laver WG. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 1983; 303: 41– 44 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000927
Loading
/content/journal/jgv/10.1099/jgv.0.000927
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error