1887

Abstract

Pestiviruses are enveloped viruses that bud intracellularly. They have three envelope glycoproteins, E, E1, and E2. E2 is the receptor binding protein and the main target for neutralizing antibodies. Both E and E2 are retained intracellularly. Here, E2 of the bovine viral diarrhea virus (BVDV) strain CP7 was used to study the membrane topology and intracellular localization of the protein. E2 is localized in the ER and there was no difference between E2 expressed alone or in the context of the viral polyprotein. The mature E2 protein was found to possess a single span transmembrane anchor. For the mapping of a retention signal CD72-E2 fusion proteins, as well as E2 alone were analysed. This confirmed the importance of the transmembrane domain and arginine 355 for intracellular retention, but also revealed a modulating effect on retention through the cytoplasmic tail of the E2 protein, especially through glutamine 370. Mutants with a strong impact on retention were tested in the viral context and we were able to rescue BVDV with certain mutations that in E2 alone impaired intracellular retention and lead to export of E2 to the cells surface.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000912
2017-09-06
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/10/2482.html?itemId=/content/journal/jgv/10.1099/jgv.0.000912&mimeType=html&fmt=ahah

References

  1. Simmonds P, Becher P, Collett MS, Gould EA, Heinz FX et al. Flaviviridae. In King AMQ, Lefkowitz E, Adams MJ, Carstens EB, Fauquet CM. et al. (editors) 3 Virus Taxonomy Ninth Report of the International Committee on Taxonomy of Viruses San Diego, USA: Academic Press; 2012; pp. 1003– 1020
    [Google Scholar]
  2. Lindenbach BD, Murray CL, Thiel HJ, Rice CM. Flaviviridae. In Knipe DM, Howley PM. (editors) Fields Virology Seriesvol. 1 Philadelphia: Lippincott Williams & Wilkins; 2013; pp. 712– 746
    [Google Scholar]
  3. Thiel HJ, Plagemann PGW, Moennig V. Pestiviruses. In Fields BN, Knipe DM, Howley PM. (editors) Fields Virology Philadelphia, New York: Lippincott - Raven Publishers; 1996; pp. 1059– 1073
    [Google Scholar]
  4. Dunne HW. Hog cholera (European swine fever). Adv Vet Sci Comp Med 1973; 17: 315– 359 [PubMed]
    [Google Scholar]
  5. Tautz N, Tews BA, Meyers G. The molecular biology of Pestiviruses. Adv Virus Res 2015; 93: 47– 160 [CrossRef] [PubMed]
    [Google Scholar]
  6. Baker JC. Bovine viral diarrhea virus: a review. J Am Vet Med Assoc 1987; 190: 1449– 1458 [PubMed]
    [Google Scholar]
  7. Bolin SR, Mcclurkin AW, Cutlip RC, Coria MF. Severe clinical disease induced in cattle persistently infected with noncytopathic bovine viral diarrhea virus by superinfection with cytopathic bovine viral diarrhea virus. Am J Vet Res 1985; 46: 573– 576 [PubMed]
    [Google Scholar]
  8. Mcclurkin AW, Bolin SR, Coria MF. Isolation of cytopathic and noncytopathic bovine viral diarrhea virus from the spleen of cattle acutely and chronically affected with bovine viral diarrhea. J Am Vet Med Assoc 1985; 186: 568– 569 [PubMed]
    [Google Scholar]
  9. Brownlie J, Clarke MC, Howard CJ. Experimental production of fatal mucosal disease in cattle. Vet Rec 1984; 114: 535– 536 [CrossRef] [PubMed]
    [Google Scholar]
  10. Buckwold VE, Beer BE, Donis RO. Bovine viral diarrhea virus as a surrogate model of Hepatitis C virus for the evaluation of antiviral agents. Antiviral Res 2003; 60: 1– 15 [CrossRef] [PubMed]
    [Google Scholar]
  11. Stark R, Meyers G, Rümenapf T, Thiel HJ. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol 1993; 67: 7088– 7095 [PubMed]
    [Google Scholar]
  12. Bintintan I, Meyers G. A new type of signal peptidase cleavage site identified in an RNA virus polyprotein. J Biol Chem 2010; 285: 8572– 8584 [CrossRef] [PubMed]
    [Google Scholar]
  13. Rümenapf T, Unger G, Strauss JH, Thiel HJ. Processing of the envelope glycoproteins of Pestiviruses. J Virol 1993; 67: 3288– 3295 [PubMed]
    [Google Scholar]
  14. Elbers K, Tautz N, Becher P, Stoll D, Rümenapf T et al. Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7. J Virol 1996; 70: 4131– 4135 [PubMed]
    [Google Scholar]
  15. Harada T, Tautz N, Thiel HJ. E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J Virol 2000; 74: 9498– 9506 [CrossRef] [PubMed]
    [Google Scholar]
  16. Heimann M, Roman-Sosa G, Martoglio B, Thiel HJ, Rümenapf T. Core protein of Pestiviruses is processed at the C terminus by signal peptide peptidase. J Virol 2006; 80: 1915– 1921 [CrossRef] [PubMed]
    [Google Scholar]
  17. Weiland E, Stark R, Haas B, Rümenapf T, Meyers G et al. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. J Virol 1990; 64: 3563– 3569 [PubMed]
    [Google Scholar]
  18. Collett MS, Wiskerchen M, Welniak E, Belzer SK. Bovine viral diarrhea virus genomic organization. Arch Virol Suppl 1991; 3: 19– 27 [PubMed] [Crossref]
    [Google Scholar]
  19. Lamp B, Riedel C, Roman-Sosa G, Heimann M, Jacobi S et al. Biosynthesis of classical swine fever virus nonstructural proteins. J Virol 2011; 85: 3607– 3620 [CrossRef] [PubMed]
    [Google Scholar]
  20. Thiel HJ, Stark R, Weiland E, Rümenapf T, Meyers G. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol 1991; 65: 4705– 4712 [PubMed]
    [Google Scholar]
  21. Hulst MM, Moormann RJ. Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors. J Gen Virol 1997; 78: 2779– 2787 [CrossRef] [PubMed]
    [Google Scholar]
  22. Maurer K, Krey T, Moennig V, Thiel HJ, Rümenapf T. CD46 is a cellular receptor for bovine viral diarrhea virus. J Virol 2004; 78: 1792– 1799 [CrossRef] [PubMed]
    [Google Scholar]
  23. Paton DJ, Lowings JP, Barrett AD. Epitope mapping of the gp53 envelope protein of bovine viral diarrhea virus. Virology 1992; 190: 763– 772 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tews BA, Meyers G. The pestivirus glycoprotein Erns is anchored in plane in the membrane via an amphipathic helix. J Biol Chem 2007; 282: 32730– 32741 [CrossRef] [PubMed]
    [Google Scholar]
  25. Fetzer C, Tews BA, Meyers G. The carboxy-terminal sequence of the pestivirus glycoprotein E(rns) represents an unusual type of membrane anchor. J Virol 2005; 79: 11901– 11913 [CrossRef] [PubMed]
    [Google Scholar]
  26. Aberle D, Muhle-Goll C, Bürck J, Wolf M, Reißer S et al. Structure of the membrane anchor of pestivirus glycoprotein E(rns), a long tilted amphipathic helix. PLoS Pathog 2014; 10: e1003973 [CrossRef] [PubMed]
    [Google Scholar]
  27. Cocquerel L, Op de Beeck A, Lambot M, Roussel J, Delgrange D et al. Topological changes in the transmembrane domains of Hepatitis C virus envelope glycoproteins. EMBO J 2002; 21: 2893– 2902 [CrossRef] [PubMed]
    [Google Scholar]
  28. Weiland F, Weiland E, Unger G, Saalmüller A, Thiel HJ. Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. J Gen Virol 1999; 80: 1157– 1165 [CrossRef] [PubMed]
    [Google Scholar]
  29. Grummer B, Beer M, Liebler-Tenorio E, Greiser-Wilke I. Localization of viral proteins in cells infected with bovine viral diarrhoea virus. J Gen Virol 2001; 82: 2597– 2605 [CrossRef] [PubMed]
    [Google Scholar]
  30. Schmeiser S, Mast J, Thiel HJ, König M. Morphogenesis of pestiviruses: new insights from ultrastructural studies of strain giraffe-1. J Virol 2014; 88: 2717– 2724 [CrossRef] [PubMed]
    [Google Scholar]
  31. Burrack S, Aberle D, Bürck J, Ulrich AS, Meyers G. A new type of intracellular retention signal identified in a pestivirus structural glycoprotein. FASEB J 2012; 26: 3292– 3305 [CrossRef] [PubMed]
    [Google Scholar]
  32. Köhl W, Zimmer G, Greiser-Wilke I, Haas L, Moennig V et al. The surface glycoprotein E2 of bovine viral diarrhoea virus contains an intracellular localization signal. J Gen Virol 2004; 85: 1101– 1111 [CrossRef] [PubMed]
    [Google Scholar]
  33. Duvet S, Cocquerel L, Pillez A, Cacan R, Verbert A et al. Hepatitis C virus glycoprotein complex localization in the endoplasmic reticulum involves a determinant for retention and not retrieval. J Biol Chem 1998; 273: 32088– 32095 [CrossRef] [PubMed]
    [Google Scholar]
  34. Cocquerel L, Duvet S, Meunier JC, Pillez A, Cacan R et al. The transmembrane domain of Hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. J Virol 1999; 73: 2641– 2649 [PubMed]
    [Google Scholar]
  35. Kong L, Giang E, Nieusma T, Kadam RU, Cogburn KE et al. Hepatitis C virus E2 envelope glycoprotein core structure. Science 2013; 342: 1090– 1094 [CrossRef] [PubMed]
    [Google Scholar]
  36. El Omari K, Iourin O, Harlos K, Grimes JM, Stuart DI. Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry. Cell Rep 2013; 3: 30– 35 [CrossRef] [PubMed]
    [Google Scholar]
  37. Li Y, Wang J, Kanai R, Modis Y. Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. Proc Natl Acad Sci USA 2013; 110: 6805– 6810 [CrossRef] [PubMed]
    [Google Scholar]
  38. Van Gennip HG, Van Rijn PA, Widjojoatmodjo MN, De Smit AJ, Moormann RJ. Chimeric classical swine fever viruses containing envelope protein E(RNS) or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine 2000; 19: 447– 459 [CrossRef] [PubMed]
    [Google Scholar]
  39. Beer M, Reimann I, Hoffmann B, Depner K. Novel marker vaccines against classical swine fever. Vaccine 2007; 25: 5665– 5670 [CrossRef] [PubMed]
    [Google Scholar]
  40. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305: 567– 580 [CrossRef] [PubMed]
    [Google Scholar]
  41. Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 2015; 43: W401– W407 [CrossRef] [PubMed]
    [Google Scholar]
  42. Dobson L, Reményi I, Tusnády GE. CCTOP: a consensus constrained topology prediction web server. Nucleic Acids Res 2015; 43: W408– W412 [CrossRef] [PubMed]
    [Google Scholar]
  43. Meyers G, Tautz N, Becher P, Thiel HJ, Kümmerer BM. Recovery of cytopathogenic and noncytopathogenic bovine viral diarrhea viruses from cDNA constructs. J Virol 1996; 70: 8606– 8613 [PubMed]
    [Google Scholar]
  44. Munro S, Pelham HR. A C-terminal signal prevents secretion of luminal ER proteins. Cell 1987; 48: 899– 907 [CrossRef] [PubMed]
    [Google Scholar]
  45. Cosson P, Letourneur F. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 1994; 263: 1629– 1631 [CrossRef] [PubMed]
    [Google Scholar]
  46. Bretscher MS, Munro S. Cholesterol and the golgi apparatus. Science 1993; 261: 1280– 1281 [CrossRef] [PubMed]
    [Google Scholar]
  47. Levine TP, Wiggins CA, Munro S. Inositol phosphorylceramide synthase is located in the golgi apparatus of Saccharomyces cerevisiae. Mol Biol Cell 2000; 11: 2267– 2281 [CrossRef] [PubMed]
    [Google Scholar]
  48. Sharpe HJ, Stevens TJ, Munro S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 2010; 142: 158– 169 [CrossRef] [PubMed]
    [Google Scholar]
  49. Markoff L, Chang A, Falgout B. Processing of flavivirus structural glycoproteins: stable membrane insertion of premembrane requires the envelope signal peptide. Virology 1994; 204: 526– 540 [CrossRef] [PubMed]
    [Google Scholar]
  50. Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 2003; 10: 907– 912 [CrossRef] [PubMed]
    [Google Scholar]
  51. Bonifacino JS, Cosson P, Shah N, Klausner RD. Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. Embo J 1991; 10: 2783– 2793 [PubMed]
    [Google Scholar]
  52. Hsieh SC, Tsai WY, Wang WK. The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum. J Virol 2010; 84: 4782– 4797 [CrossRef] [PubMed]
    [Google Scholar]
  53. Ciczora Y, Callens N, Séron K, Rouillé Y, Dubuisson J. Identification of a dominant endoplasmic reticulum-retention signal in yellow fever virus pre-membrane protein. J Gen Virol 2010; 91: 404– 414 [CrossRef] [PubMed]
    [Google Scholar]
  54. Blazevic J, Rouha H, Bradt V, Heinz FX, Stiasny K. Membrane Anchors of the structural Flavivirus proteins and their role in virus assembly. J Virol 2016; 90: 6365– 6378 [CrossRef] [PubMed]
    [Google Scholar]
  55. Ciczora Y, Callens N, Montpellier C, Bartosch B, Cosset FL et al. Contribution of the charged residues of Hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer. J Gen Virol 2005; 86: 2793– 2798 [CrossRef] [PubMed]
    [Google Scholar]
  56. Haddad JG, Rouillé Y, Hanoulle X, Descamps V, Hamze M et al. Identification of novel functions for Hepatitis C virus envelope glycoprotein E1 in virus entry and assembly. J Virol 2017; 91: e00048-17 [CrossRef] [PubMed]
    [Google Scholar]
  57. Ronecker S, Zimmer G, Herrler G, Greiser-Wilke I, Grummer B. Formation of bovine viral diarrhea virus E1-E2 heterodimers is essential for virus entry and depends on charged residues in the transmembrane domains. J Gen Virol 2008; 89: 2114– 2121 [CrossRef] [PubMed]
    [Google Scholar]
  58. Monné M, Hermansson M, Von Heijne G. A turn propensity scale for transmembrane helices. J Mol Biol 1999; 288: 141– 145 [CrossRef] [PubMed]
    [Google Scholar]
  59. Monné M, Nilsson I, Elofsson A, von Heijne G. Turns in transmembrane helices: determination of the minimal length of a "helical hairpin" and derivation of a fine-grained turn propensity scale. J Mol Biol 1999; 293: 807– 814 [CrossRef] [PubMed]
    [Google Scholar]
  60. Meyers G, Thiel HJ, Rümenapf T. Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. J Virol 1996; 70: 1588– 1595 [PubMed]
    [Google Scholar]
  61. Weiland E, Thiel HJ, Hess G, Weiland F. Development of monoclonal neutralizing antibodies against bovine viral diarrhea virus after pretreatment of mice with normal bovine cells and cyclophosphamide. J Virol Methods 1989; 24: 237– 243 [CrossRef] [PubMed]
    [Google Scholar]
  62. Kosmidou A, Ahl R, Thiel HJ, Weiland E. Differentiation of classical swine fever virus (CSFV) strains using monoclonal antibodies against structural glycoproteins. Vet Microbiol 1995; 47: 111– 118 [CrossRef] [PubMed]
    [Google Scholar]
  63. Corapi WV, Donis RO, Dubovi EJ. Characterization of a panel of monoclonal antibodies and their use in the study of the antigenic diversity of bovine viral diarrhea virus. Am J Vet Res 1990; 51: 1388– 1394 [PubMed]
    [Google Scholar]
  64. Kremers GJ, Goedhart J, van den Heuvel DJ, Gerritsen HC, Gadella TW. Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 2007; 46: 3775– 3783 [CrossRef] [PubMed]
    [Google Scholar]
  65. Rocha-Perugini V, Montpellier C, Delgrange D, Wychowski C, Helle F et al. The CD81 partner EWI-2wint inhibits Hepatitis C virus entry. PLoS One 2008; 3: e1866 [CrossRef] [PubMed]
    [Google Scholar]
  66. Montpellier C, Tews BA, Poitrimole J, Rocha-Perugini V, D'Arienzo V et al. Interacting regions of CD81 and two of its partners, EWI-2 and EWI-2wint, and their effect on Hepatitis C virus infection. J Biol Chem 2011; 286: 13954– 13965 [CrossRef] [PubMed]
    [Google Scholar]
  67. Cocquerel L, Wychowski C, Minner F, Penin F, Dubuisson J. Charged residues in the transmembrane domains of Hepatitis C virus glycoproteins play a major role in the processing, subcellular localization, and assembly of these envelope proteins. J Virol 2000; 74: 3623– 3633 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000912
Loading
/content/journal/jgv/10.1099/jgv.0.000912
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error