1887

Abstract

The role of mA methylation of RNA has remained elusive for decades, but recent technological advances are now allowing the mapping of the mA methylation landscape at nucleotide level. This has spurred an explosion in our understanding of the role played by RNA epigenetics in RNA biology. mA modifications have been tied to almost every aspect of the mRNA life cycle and it is now clear that RNA virus genomes are subject to mA methylation. These modifications play various roles in the viral replication cycle. This review will summarize recent breakthroughs concerning mA RNA modification and their implications for cellular and viral RNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000910
2017-09-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/9/2207.html?itemId=/content/journal/jgv/10.1099/jgv.0.000910&mimeType=html&fmt=ahah

References

  1. Davis FF, Allen FW. Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 1957;227:907–915[PubMed]
    [Google Scholar]
  2. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 1974;71:3971–3975 [CrossRef][PubMed]
    [Google Scholar]
  3. Adams JM, Cory S. Modified nucleosides and bizarre 5'-termini in mouse myeloma mRNA. Nature 1975;255:28–33 [CrossRef][PubMed]
    [Google Scholar]
  4. Furuichi Y, Morgan M, Shatkin AJ, Jelinek W, Salditt-Georgieff M et al. Methylated, blocked 5 termini in HeLa cell mRNA. Proc Natl Acad Sci USA 1975;72:1904–1908 [CrossRef][PubMed]
    [Google Scholar]
  5. Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5' terminus of HeLa cell messenger RNA. Cell 1975;4:379–386 [CrossRef][PubMed]
    [Google Scholar]
  6. Krug RM, Morgan MA, Shatkin AJ. Influenza viral mRNA contains internal N6-methyladenosine and 5'-terminal 7-methylguanosine in cap structures. J Virol 1976;20:45–53[PubMed]
    [Google Scholar]
  7. Wei CM, Moss B. Methylated nucleotides block 5'-terminus of vaccinia virus messenger RNA. Proc Natl Acad Sci USA 1975;72:318–322 [CrossRef][PubMed]
    [Google Scholar]
  8. Kane SE, Beemon K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol Cell Biol 1985;5:2298–2306 [CrossRef][PubMed]
    [Google Scholar]
  9. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M et al. MODOMICS: a database of RNA modification pathways-2013 update. Nucleic Acids Res 2013;41:D262–D267 [CrossRef][PubMed]
    [Google Scholar]
  10. Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S et al. HNRNPA2B1 Is a mediator of m6A-dependent nuclear RNA processing events. Cell 2015;162:1299–1308 [CrossRef][PubMed]
    [Google Scholar]
  11. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012;485:201–206 [CrossRef][PubMed]
    [Google Scholar]
  12. Liu N, Dai Q, Zheng G, He C, Parisien M et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015;518:560–564 [CrossRef][PubMed]
    [Google Scholar]
  13. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA et al. 5' UTR m6A promotes cap-independent translation. Cell 2015;163:999–1010 [CrossRef][PubMed]
    [Google Scholar]
  14. Wang X, Lu Z, Gomez A, Hon GC, Yue Y et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015;161:1388–1399 [CrossRef][PubMed]
    [Google Scholar]
  16. Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell 2016;61:507–519 [CrossRef][PubMed]
    [Google Scholar]
  17. Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 1994;269:17697–17704[PubMed]
    [Google Scholar]
  18. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 1997;3:1233–1247[PubMed]
    [Google Scholar]
  19. Liu J, Yue Y, Han D, Wang X, Fu Y et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014;10:93–95 [CrossRef][PubMed]
    [Google Scholar]
  20. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014;16:191–198 [CrossRef][PubMed]
    [Google Scholar]
  21. Ping XL, Sun BF, Wang L, Xiao W, Yang X et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014;24:177–189 [CrossRef][PubMed]
    [Google Scholar]
  22. Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013;155:1409–1421 [CrossRef][PubMed]
    [Google Scholar]
  23. Batista PJ, Molinie B, Wang J, Qu K, Zhang J et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 2014;15:707–719 [CrossRef][PubMed]
    [Google Scholar]
  24. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 2015;347:1002–1006 [CrossRef][PubMed]
    [Google Scholar]
  25. Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011;7:885–887 [CrossRef][PubMed]
    [Google Scholar]
  26. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013;49:18–29 [CrossRef][PubMed]
    [Google Scholar]
  27. Gokhale NS, Mcintyre AB, Mcfadden MJ, Roder AE, Kennedy EM et al. N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 2016;20:654–665 [CrossRef][PubMed]
    [Google Scholar]
  28. Kennedy EM, Bogerd HP, Kornepati AV, Kang D, Ghoshal D et al. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 2016;19:675–685 [CrossRef][PubMed]
    [Google Scholar]
  29. Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V et al. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 2016;1:16011 [CrossRef][PubMed]
    [Google Scholar]
  30. Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y et al. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 2016;20:666–673 [CrossRef][PubMed]
    [Google Scholar]
  31. Tirumuru N, Zhao BS, Lu W, Lu Z, He C et al. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 gag protein expression. Elife 2016;5: [CrossRef][PubMed]
    [Google Scholar]
  32. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012;149:1635–1646 [CrossRef][PubMed]
    [Google Scholar]
  33. Chen K, Lu Z, Wang X, Fu Y, Luo GZ et al. High-resolution N6-methyladenosine m6A map using photo-crosslinking-assisted m6A sequencing. Angew Chem Int Ed Engl 2015;54:1587–1590 [CrossRef][PubMed]
    [Google Scholar]
  34. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 2015;12:767–772 [CrossRef][PubMed]
    [Google Scholar]
  35. Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ et al. A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Genes Dev 2015;29:2037–2053 [CrossRef][PubMed]
    [Google Scholar]
  36. Liu N, Parisien M, Dai Q, Zheng G, He C et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 2013;19:1848–1856 [CrossRef][PubMed]
    [Google Scholar]
  37. Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX et al. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat Methods 2016;13:692–698 [CrossRef][PubMed]
    [Google Scholar]
  38. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 2015;526:591–594 [CrossRef][PubMed]
    [Google Scholar]
  39. Kierzek E, Kierzek R. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res 2003;31:4472–4480 [CrossRef][PubMed]
    [Google Scholar]
  40. Roost C, Lynch SR, Batista PJ, Qu K, Chang HY et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J Am Chem Soc 2015;137:2107–2115 [CrossRef][PubMed]
    [Google Scholar]
  41. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 2015;519:486–490 [CrossRef][PubMed]
    [Google Scholar]
  42. Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 2017;45:6051-6063 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhao X, Yang Y, Sun BF, Shi Y, Yang X et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 2014;24:1403–1419 [CrossRef][PubMed]
    [Google Scholar]
  44. Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 2013;155:793–806 [CrossRef][PubMed]
    [Google Scholar]
  45. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C et al. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016;537:369–373 [CrossRef][PubMed]
    [Google Scholar]
  46. Chen T, Hao YJ, Zhang Y, Li MM, Wang M et al. m6A RNA methylation is regulated by MicroRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015;16:289–301 [CrossRef][PubMed]
    [Google Scholar]
  47. Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 2017;543:573–576 [CrossRef][PubMed]
    [Google Scholar]
  48. Finkel D, Groner Y. Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs. Virology 1983;131:409–425 [CrossRef][PubMed]
    [Google Scholar]
  49. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005;23:165–175 [CrossRef][PubMed]
    [Google Scholar]
  50. Durbin AF, Wang C, Marcotrigiano J, Gehrke L. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. MBio 2016;7:e00833-16 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000910
Loading
/content/journal/jgv/10.1099/jgv.0.000910
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error