1887

Abstract

Inside the virions of α-herpesviruses, tegument protein pUL25 anchors the tegument to capsid vertices through direct interactions with tegument proteins pUL17 and pUL36. In addition to promoting virion assembly, both pUL25 and pUL36 are critical for intracellular microtubule-dependent capsid transport. Despite these essential roles during infection, the stoichiometry and precise organization of pUL25 and pUL36 on the capsid surface remain controversial due to the insufficient resolution of existing reconstructions from cryo-electron microscopy (cryoEM). Here, we report a three-dimensional (3D) icosahedral reconstruction of pseudorabies virus (PRV), a varicellovirus of the α-herpesvirinae subfamily, obtained by electron-counting cryoEM at 4.9 Å resolution. Our reconstruction resolves a dimer of pUL25 forming a capsid-associated tegument complex with pUL36 and pUL17 through a coiled coil helix bundle, thus correcting previous misinterpretations. A comparison between reconstructions of PRV and the γ-herpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV) reinforces their similar architectures and establishes important subfamily differences in the capsid–tegument interface.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000903
2017-10-16
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/11/2837.html?itemId=/content/journal/jgv/10.1099/jgv.0.000903&mimeType=html&fmt=ahah

References

  1. Zerboni L, Sen N, Oliver SL, Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol 2014; 12: 197– 210 [CrossRef] [PubMed]
    [Google Scholar]
  2. Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005; 69: 462– 500 [CrossRef] [PubMed]
    [Google Scholar]
  3. Kramer T, Enquist LW. Directional spread of alphaherpesviruses in the nervous system. Viruses 2013; 5: 678– 707 [CrossRef] [PubMed]
    [Google Scholar]
  4. Smith G. Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol 2012; 66: 153– 176 [CrossRef] [PubMed]
    [Google Scholar]
  5. Antinone SE, Smith GA. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J Virol 2010; 84: 1504– 1512 [CrossRef] [PubMed]
    [Google Scholar]
  6. Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H et al. Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol 2011; 85: 6220– 6233 [CrossRef] [PubMed]
    [Google Scholar]
  7. Lee JI, Sollars PJ, Baver SB, Pickard GE, Leelawong M et al. A herpesvirus encoded deubiquitinase is a novel neuroinvasive determinant. PLoS Pathog 2009; 5: e1000387 [CrossRef] [PubMed]
    [Google Scholar]
  8. Smith BN, Banfield BW, Smeraski CA, Wilcox CL, Dudek FE et al. Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc Natl Acad Sci USA 2000; 97: 9264– 9269 [CrossRef] [PubMed]
    [Google Scholar]
  9. Zermann DH, Ishigooka M, Doggweiler R, Schubert J, Schmidt RA. Central nervous system neurons labeled following the injection of pseudorabies virus into the rat prostate gland. Prostate 2000; 44: 240– 247 [CrossRef] [PubMed]
    [Google Scholar]
  10. Liu F, Zhou ZH. Comparative virion structures of human herpesviruses. In Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B et al. (editors) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis Cambridge: Cambridge University Press; 2007
    [Google Scholar]
  11. Grünewald K, Desai P, Winkler DC, Heymann JB, Belnap DM et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 2003; 302: 1396– 1398 [CrossRef] [PubMed]
    [Google Scholar]
  12. Dai W, Jia Q, Bortz E, Shah S, Liu J et al. Unique structures in a tumor herpesvirus revealed by cryo-electron tomography and microscopy. J Struct Biol 2008; 161: 428– 438 [CrossRef] [PubMed]
    [Google Scholar]
  13. Mettenleiter TC, Klupp BG, Granzow H. Herpesvirus assembly: an update. Virus Res 2009; 143: 222– 234 [CrossRef] [PubMed]
    [Google Scholar]
  14. Wolfstein A, Nagel CH, Radtke K, Döhner K, Allan VJ et al. The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 2006; 7: 227– 237 [CrossRef] [PubMed]
    [Google Scholar]
  15. Luxton GW, Haverlock S, Coller KE, Antinone SE, Pincetic A et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci USA 2005; 102: 5832– 5837 [CrossRef] [PubMed]
    [Google Scholar]
  16. Granzow H, Klupp BG, Mettenleiter TC. Entry of pseudorabies virus: an immunogold-labeling study. J Virol 2005; 79: 3200– 3205 [CrossRef] [PubMed]
    [Google Scholar]
  17. Zaichick SV, Bohannon KP, Hughes A, Sollars PJ, Pickard GE et al. The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. Cell Host Microbe 2013; 13: 193– 203 [CrossRef] [PubMed]
    [Google Scholar]
  18. Schipke J, Pohlmann A, Diestel R, Binz A, Rudolph K et al. The C terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus. J Virol 2012; 86: 3682– 3700 [CrossRef] [PubMed]
    [Google Scholar]
  19. Abaitua F, Hollinshead M, Bolstad M, Crump CM, O'Hare P. A nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore. J Virol 2012; 86: 8998– 9014 [CrossRef] [PubMed]
    [Google Scholar]
  20. Roberts AP, Abaitua F, O'Hare P, Mcnab D, Rixon FJ et al. Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 2009; 83: 105– 116 [CrossRef] [PubMed]
    [Google Scholar]
  21. Huffmaster NJ, Sollars PJ, Richards AL, Pickard GE, Smith GA. Dynamic ubiquitination drives herpesvirus neuroinvasion. Proc Natl Acad Sci USA 2015; 112: 12818– 12823 [CrossRef] [PubMed]
    [Google Scholar]
  22. Krautwald M, Fuchs W, Klupp BG, Mettenleiter TC. Translocation of incoming pseudorabies virus capsids to the cell nucleus is delayed in the absence of tegument protein pUL37. J Virol 2009; 83: 3389– 3396 [CrossRef] [PubMed]
    [Google Scholar]
  23. Mcelwee M, Beilstein F, Labetoulle M, Rixon FJ, Pasdeloup D. Dystonin/BPAG1 promotes plus-end-directed transport of herpes simplex virus 1 capsids on microtubules during entry. J Virol 2013; 87: 11008– 11018 [CrossRef] [PubMed]
    [Google Scholar]
  24. Jovasevic V, Liang L, Roizman B. Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 2008; 82: 3311– 3319 [CrossRef] [PubMed]
    [Google Scholar]
  25. Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W. Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 1999; 73: 3210– 3218 [PubMed]
    [Google Scholar]
  26. Toropova K, Huffman JB, Homa FL, Conway JF. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol 2011; 85: 7513– 7522 [CrossRef] [PubMed]
    [Google Scholar]
  27. Conway JF, Cockrell SK, Copeland AM, Newcomb WW, Brown JC et al. Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton. J Mol Biol 2010; 397: 575– 586 [CrossRef] [PubMed]
    [Google Scholar]
  28. Leelawong M, Lee JI, Smith GA. Nuclear egress of pseudorabies virus capsids is enhanced by a subspecies of the large tegument protein that is lost upon cytoplasmic maturation. J Virol 2012; 86: 6303– 6314 [CrossRef] [PubMed]
    [Google Scholar]
  29. Fan WH, Roberts AP, Mcelwee M, Bhella D, Rixon FJ et al. The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid-tegument interface of herpes simplex virus 1. J Virol 2015; 89: 1502– 1511 [CrossRef] [PubMed]
    [Google Scholar]
  30. Trus BL, Newcomb WW, Cheng N, Cardone G, Marekov L et al. Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids. Mol Cell 2007; 26: 479– 489 [CrossRef] [PubMed]
    [Google Scholar]
  31. Dai X, Gong D, Wu TT, Sun R, Zhou ZH. Organization of capsid-associated tegument components in kaposi's sarcoma-associated herpesvirus. J Virol 2014; 88: 12694– 12702 [CrossRef] [PubMed]
    [Google Scholar]
  32. Salmon B, Cunningham C, Davison AJ, Harris WJ, Baines JD. The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J Virol 1998; 72: 3779– 3788 [PubMed]
    [Google Scholar]
  33. Tomishima MJ, Enquist LW. A conserved alpha-herpesvirus protein necessary for axonal localization of viral membrane proteins. J Cell Biol 2001; 154: 741– 752 [CrossRef] [PubMed]
    [Google Scholar]
  34. Parsons LR, Tafuri YR, Shreve JT, Bowen CD, Shipley MM et al. Rapid genome assembly and comparison decode intrastrain variation in human alphaherpesviruses. mBio 2015; 6: 2 [CrossRef] [PubMed]
    [Google Scholar]
  35. Tombácz D, Sharon D, Oláh P, Csabai Z, Snyder M et al. Strain Kaplan of pseudorabies virus Genome sequenced by PacBio Single-Molecule Real-Time sequencing technology. Genome Announc 2014; 2: e00628-14 [CrossRef] [PubMed]
    [Google Scholar]
  36. Yu X, Shah S, Lee M, Dai W, Lo P et al. Biochemical and structural characterization of the capsid-bound tegument proteins of human cytomegalovirus. J Struct Biol 2011; 174: 451– 460 [CrossRef] [PubMed]
    [Google Scholar]
  37. Dai X, Yu X, Gong H, Jiang X, Abenes G et al. The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus. PLoS Pathog 2013; 9: e1003525 [CrossRef] [PubMed]
    [Google Scholar]
  38. Chen DH, Jiang H, Lee M, Liu F, Zhou ZH. Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology 1999; 260: 10– 16 [CrossRef] [PubMed]
    [Google Scholar]
  39. Trus BL, Gibson W, Cheng N, Steven AC. Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J Virol 1999; 73: 2181– 2192 [PubMed]
    [Google Scholar]
  40. Yu X, Jih J, Jiang J, Zhou ZH. Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Science 2017; 356: 6345 [CrossRef] [PubMed]
    [Google Scholar]
  41. McNab AR, Desai P, Person S, Roof LL, Thomsen DR et al. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol 1998; 72: 1060– 1070 [PubMed]
    [Google Scholar]
  42. Meyer HH, Ripalti A, Landini MP, Radsak K, Kern HF et al. Human cytomegalovirus late-phase maturation is blocked by stably expressed UL32 antisense mRNA in astrocytoma cells. J Gen Virol 1997; 78: 2621– 2631 [CrossRef] [PubMed]
    [Google Scholar]
  43. Homa FL, Huffman JB, Toropova K, Lopez HR, Makhov AM et al. Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J Mol Biol 2013; 425: 3415– 3428 [CrossRef] [PubMed]
    [Google Scholar]
  44. Cockrell SK, Huffman JB, Toropova K, Conway JF, Homa FL. Residues of the UL25 protein of herpes simplex virus that are required for its stable interaction with capsids. J Virol 2011; 85: 4875– 4887 [CrossRef] [PubMed]
    [Google Scholar]
  45. Huet A, Makhov AM, Huffman JB, Vos M, Homa FL et al. Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat Struct Mol Biol 2016; 23: 531– 539 [CrossRef] [PubMed]
    [Google Scholar]
  46. Bowman BR, Baker ML, Rixon FJ, Chiu W, Quiocho FA. Structure of the herpesvirus major capsid protein. Embo J 2003; 22: 757– 765 [CrossRef] [PubMed]
    [Google Scholar]
  47. Bowman BR, Welschhans RL, Jayaram H, Stow ND, Preston VG et al. Structural characterization of the UL25 DNA-packaging protein from herpes simplex virus type 1. J Virol 2006; 80: 2309– 2317 [CrossRef] [PubMed]
    [Google Scholar]
  48. Cockrell SK, Sanchez ME, Erazo A, Homa FL. Role of the UL25 protein in herpes simplex virus DNA encapsidation. J Virol 2009; 83: 47– 57 [CrossRef] [PubMed]
    [Google Scholar]
  49. Lupas A, van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science 1991; 252: 1162– 1164 [CrossRef] [PubMed]
    [Google Scholar]
  50. Coller KE, Lee JI, Ueda A, Smith GA. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 2007; 81: 11790– 11797 [CrossRef] [PubMed]
    [Google Scholar]
  51. Pasdeloup D, Blondel D, Isidro AL, Rixon FJ. Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25. J Virol 2009; 83: 6610– 6623 [CrossRef] [PubMed]
    [Google Scholar]
  52. Bohannon KP, Jun Y, Gross SP, Smith GA. Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. Proc Natl Acad Sci USA 2013; 110: E1613 E1620 [CrossRef] [PubMed]
    [Google Scholar]
  53. Dai X, Gong D, Xiao Y, Wu TT, Sun R et al. CryoEM and mutagenesis reveal that the smallest capsid protein cements and stabilizes Kaposi's sarcoma-associated herpesvirus capsid. Proc Natl Acad Sci USA 2015; 112: E649 E656 [CrossRef] [PubMed]
    [Google Scholar]
  54. Klupp BG, Granzow H, Keil GM, Mettenleiter TC. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids. J Virol 2006; 80: 6235– 6246 [CrossRef] [PubMed]
    [Google Scholar]
  55. Leelawong M, Guo D, Smith GA. A physical link between the pseudorabies virus capsid and the nuclear egress complex. J Virol 2011; 85: 11675– 11684 [CrossRef] [PubMed]
    [Google Scholar]
  56. Kuhn J, Leege T, Klupp BG, Granzow H, Fuchs W et al. Partial functional complementation of a pseudorabies virus UL25 deletion mutant by herpes simplex virus type 1 pUL25 indicates overlapping functions of alphaherpesvirus pUL25 proteins. J Virol 2008; 82: 5725– 5734 [CrossRef] [PubMed]
    [Google Scholar]
  57. Luxton GW, Lee JI, Haverlock-Moyns S, Schober JM, Smith GA. The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 2006; 80: 201– 209 [CrossRef] [PubMed]
    [Google Scholar]
  58. Cardone G, Newcomb WW, Cheng N, Wingfield PT, Trus BL et al. The UL36 tegument protein of herpes simplex virus 1 has a composite binding site at the capsid vertices. J Virol 2012; 86: 4058– 4064 [CrossRef] [PubMed]
    [Google Scholar]
  59. Uetz P, Dong YA, Zeretzke C, Atzler C, Baiker A et al. Herpesviral protein networks and their interaction with the human proteome. Science 2006; 311: 239– 242 [CrossRef] [PubMed]
    [Google Scholar]
  60. Stow ND. Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS. J Virol 2001; 75: 10755– 10765 [CrossRef] [PubMed]
    [Google Scholar]
  61. Bauer DW, Huffman JB, Homa FL, Evilevitch A. Herpes virus genome, the pressure is on. J Am Chem Soc 2013; 135: 11216– 11221 [CrossRef] [PubMed]
    [Google Scholar]
  62. Woehlke G, Schliwa M. Walking on two heads: the many talents of kinesin. Nat Rev Mol Cell Biol 2000; 1: 50– 58 [CrossRef] [PubMed]
    [Google Scholar]
  63. Hirokawa N, Pfister KK, Yorifuji H, Wagner MC, Brady ST et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 1989; 56: 867– 878 [CrossRef] [PubMed]
    [Google Scholar]
  64. Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 1996; 380: 550– 555 [CrossRef] [PubMed]
    [Google Scholar]
  65. Kaelin K, Dezélée S, Masse MJ, Bras F, Flamand A. The UL25 protein of pseudorabies virus associates with capsids and localizes to the nucleus and to microtubules. J Virol 2000; 74: 474– 482 [CrossRef] [PubMed]
    [Google Scholar]
  66. MacRae TH. Microtubule organization by cross-linking and bundling proteins. Biochim Biophys Acta 1992; 1160: 145– 155 [CrossRef] [PubMed]
    [Google Scholar]
  67. Straube A, Hause G, Fink G, Steinberg G. Conventional kinesin mediates microtubule-microtubule interactions in vivo. Mol Biol Cell 2006; 17: 907– 916 [CrossRef] [PubMed]
    [Google Scholar]
  68. Andrews SB, Gallant PE, Leapman RD, Schnapp BJ, Reese TS. Single kinesin molecules crossbridge microtubules in vitro. Proc Natl Acad Sci USA 1993; 90: 6503– 6507 [CrossRef] [PubMed]
    [Google Scholar]
  69. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F et al. Automated molecular microscopy: the new Leginon system. J Struct Biol 2005; 151: 41– 60 [CrossRef] [PubMed]
    [Google Scholar]
  70. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 2013; 10: 584– 590 [CrossRef] [PubMed]
    [Google Scholar]
  71. Mindell JA, Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 2003; 142: 334– 347 [CrossRef] [PubMed]
    [Google Scholar]
  72. Heymann JB, Belnap DM. Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 2007; 157: 3– 18 [CrossRef] [PubMed]
    [Google Scholar]
  73. Ludtke SJ, Baldwin PR, Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 1999; 128: 82– 97 [CrossRef] [PubMed]
    [Google Scholar]
  74. Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 2012; 180: 519– 530 [CrossRef] [PubMed]
    [Google Scholar]
  75. Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods 2012; 9: 853– 854 [CrossRef] [PubMed]
    [Google Scholar]
  76. Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods 2014; 11: 63– 65 [CrossRef] [PubMed]
    [Google Scholar]
  77. Grigorieff N. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J Mol Biol 1998; 277: 1033– 1046 [CrossRef] [PubMed]
    [Google Scholar]
  78. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W et al. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 2007; 157: 38– 46 [CrossRef] [PubMed]
    [Google Scholar]
  79. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605– 1612 [CrossRef] [PubMed]
    [Google Scholar]
  80. Huang X, Miller W. A time-efficient, linear-space local similarity algorithm. Adv Appl Math 1991; 12: 337– 357 [CrossRef]
    [Google Scholar]
  81. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res 2015; 43: W389– W394 [CrossRef] [PubMed]
    [Google Scholar]
  82. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126– 2132 [CrossRef] [PubMed]
    [Google Scholar]
  83. Baker NA, Sept D, Joseph S, Holst MJ, Mccammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 2001; 98: 10037– 10041 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000903
Loading
/content/journal/jgv/10.1099/jgv.0.000903
Loading

Data & Media loading...

Supplementary File 1

PDF

Supplementary File 2

Supplementary File 3

Supplementary File 4

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error