1887

Abstract

Feline coronaviruses encode five accessory proteins with largely elusive functions. Here, one of these proteins, called 7b (206 residues), was investigated using a reverse genetic approach established for feline infectious peritonitis virus (FIPV) strain 79–1146. Recombinant FIPVs (rFPIVs) expressing mutant and/or FLAG-tagged forms of 7b were generated and used to investigate the expression, processing, glycosylation, localization and trafficking of the 7b protein in rFIPV-infected cells, focusing on a previously predicted ER retention signal, KTEL, at the C-terminus of 7b. The study revealed that 7b is N-terminally processed by a cellular signalase. The cleavage site, 17-Ala|Thr-18, was unambiguously identified by N-terminal sequence analysis of a 7b processing product purified from rFIPV-infected cells. Based on this information, rFIPVs expressing FLAG-tagged 7b proteins were generated and the effects of substitutions in the C-terminal KTEL sequence were investigated. The data show that (i) 7b localizes to and is retained in the - and/or -Golgi compartment, (ii) the C-terminal KTEL sequence acts as a Golgi [rather than an endoplasmic reticulum (ER)] retention signal, (iii) minor changes in the KTEL motif (such as KTE, KTEV, or the addition of a C-terminal tag) abolish Golgi retention, resulting in relocalization and secretion of 7b, and (iv) a KTEL-to-KDEL replacement causes retention of 7b in the ER of rFIPV-infected feline cells. Taken together, this study provides interesting new insights into an efficient Golgi retention signal that controls the cellular localization and trafficking of the FIPV 7b protein in virus-infected feline cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000879
2017-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/8/2017.html?itemId=/content/journal/jgv/10.1099/jgv.0.000879&mimeType=html&fmt=ahah

References

  1. de Groot RJ, Cowley JA, Enjuanes L, Faaberg KS, Perlman S et al. Order Nidovirales. In King AMQ AM, Carstens EB, Lefkowitz EJ. (editors) Virus Taxonomy Ninth Report of the International Committee on Taxonomy of Viruses Amsterdam, NL: Elsevier Academic Press; 2012 pp. 785–795
    [Google Scholar]
  2. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE et al. Family Coronaviridae. In King AMQ AM, Carstens EB, Lefkowitz EJ. (editors) Virus Taxonomy Ninth Report of the International Committee on Taxonomy of Viruses Amsterdam, NL: Elsevier Academic Press; 2012 pp. 806–828
    [Google Scholar]
  3. Hohdatsu T, Okada S, Ishizuka Y, Yamada H, Koyama H. The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci 1992; 54:557–562 [View Article][PubMed]
    [Google Scholar]
  4. Pedersen NC. A review of feline infectious peritonitis virus infection: 1963-2008. J Feline Med Surg 2009; 11:225–258 [View Article][PubMed]
    [Google Scholar]
  5. Hohdatsu T, Okada S, Koyama H. Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch Virol 1991; 117:85–95 [View Article][PubMed]
    [Google Scholar]
  6. Hohdatsu T, Sasamoto T, Okada S, Koyama H. Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683. Vet Microbiol 1991; 28:13–24 [View Article][PubMed]
    [Google Scholar]
  7. Pedersen NC. Pathogenic differences between various feline coronavirus isolates. In Rottier PJ, Zeijst BAM, Spaan WJM, Horzinek MC. (editors) Molecular Biology and Pathogenesis of Coronaviruses New York, NY: Plenum Press; 1984
    [Google Scholar]
  8. Addie DD, Schaap IA, Nicolson L, Jarrett O. Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol 2003; 84:2735–2744 [View Article][PubMed]
    [Google Scholar]
  9. Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 1998; 72:4508–4514[PubMed]
    [Google Scholar]
  10. Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H et al. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One 2014; 9:e106534 [View Article][PubMed]
    [Google Scholar]
  11. Vennema H, Poland A, Foley J, Pedersen NC. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 1998; 243:150–157 [View Article][PubMed]
    [Google Scholar]
  12. Chang HW, Egberink HF, Rottier PJ. Sequence analysis of feline coronaviruses and the circulating virulent/avirulent theory. Emerg Infect Dis 2011; 17:744–746 [View Article][PubMed]
    [Google Scholar]
  13. Haijema BJ, Rottier PJ, de Groot RJ. Feline Coronaviruses: A tale of two-faced types. In Thiel V. (editor) Coronaviruses - Molecular and Cellular Biology Norfolk, UK: Caister Academic Press; 2007 pp. 183–208
    [Google Scholar]
  14. Poland AM, Vennema H, Foley JE, Pedersen NC. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol 1996; 34:3180–3184[PubMed]
    [Google Scholar]
  15. Kennedy M, Boedeker N, Gibbs P, Kania S. Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 2001; 81:227–234 [View Article][PubMed]
    [Google Scholar]
  16. Chang HW, de Groot RJ, Egberink HF, Rottier PJ. Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J Gen Virol 2010; 91:415–420 [View Article][PubMed]
    [Google Scholar]
  17. Licitra BN, Millet JK, Regan AD, Hamilton BS, Rinaldi VD et al. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerg Infect Dis 2013; 19:1066–1073 [View Article][PubMed]
    [Google Scholar]
  18. Bank-Wolf BR, Stallkamp I, Wiese S, Moritz A, Tekes G et al. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis. Vet Microbiol 2014; 173:177–188 [View Article][PubMed]
    [Google Scholar]
  19. Lewis CS, Porter E, Matthews D, Kipar A, Tasker S et al. Genotyping coronaviruses associated with feline infectious peritonitis. J Gen Virol 2015; 96:1358–1368 [View Article][PubMed]
    [Google Scholar]
  20. Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 2014; 109:97–109 [View Article][PubMed]
    [Google Scholar]
  21. Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins. Virus Res 2008; 133:113–121 [View Article][PubMed]
    [Google Scholar]
  22. Narayanan K, Huang C, Makino S. Coronavirus accessory proteins. In Perlman S, Gallagher T, Snijder EJ. (editors) Nidoviruses Washington, DC: ASM Press; 2008 pp. 235–244 [CrossRef]
    [Google Scholar]
  23. Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1–100[PubMed] [CrossRef]
    [Google Scholar]
  24. Lorusso A, Decaro N, Schellen P, Rottier PJ, Buonavoglia C et al. Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol 2008; 82:10312–10317 [View Article][PubMed]
    [Google Scholar]
  25. Decaro N, Buonavoglia C. Canine coronavirus: not only an enteric pathogen. Vet Clin North Am Small Anim Pract 2011; 41:1121–1132 [View Article][PubMed]
    [Google Scholar]
  26. Decaro N, Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology. Vet Microbiol 2008; 132:221–234 [View Article][PubMed]
    [Google Scholar]
  27. Haijema BJ, Volders H, Rottier PJ. Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol 2004; 78:3863–3871 [View Article][PubMed]
    [Google Scholar]
  28. Dedeurwaerder A, Olyslaegers DA, Desmarets LM, Roukaerts ID, Theuns S et al. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response. J Gen Virol 2014; 95:393–402 [View Article][PubMed]
    [Google Scholar]
  29. Vennema H, Heijnen L, Rottier PJ, Horzinek MC, Spaan WJ. A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J Virol 1992; 66:4951–4956[PubMed]
    [Google Scholar]
  30. Lemmermeyer T, Lamp B, Schneider R, Ziebuhr J, Tekes G et al. Characterization of monoclonal antibodies against feline coronavirus accessory protein 7b. Vet Microbiol 2016; 184:11–19 [View Article][PubMed]
    [Google Scholar]
  31. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8:785–786 [View Article][PubMed]
    [Google Scholar]
  32. Gao C, Cai Y, Wang Y, Kang BH, Aniento F et al. Retention mechanisms for ER and Golgi membrane proteins. Trends Plant Sci 2014; 19:508–515 [View Article][PubMed]
    [Google Scholar]
  33. Munro S, Pelham HR. A C-terminal signal prevents secretion of luminal ER proteins. Cell 1987; 48:899–907 [View Article][PubMed]
    [Google Scholar]
  34. Raykhel I, Alanen H, Salo K, Jurvansuu J, Nguyen VD et al. A molecular specificity code for the three mammalian KDEL receptors. J Cell Biol 2007; 179:1193–1204 [View Article][PubMed]
    [Google Scholar]
  35. Capitani M, Sallese M. The KDEL receptor: new functions for an old protein. FEBS Lett 2009; 583:3863–3871 [View Article][PubMed]
    [Google Scholar]
  36. Byun M, Wang X, Pak M, Hansen TH, Yokoyama WM. Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface. Cell Host Microbe 2007; 2:306–315 [View Article][PubMed]
    [Google Scholar]
  37. Pelham HR. The dynamic organisation of the secretory pathway. Cell Struct Funct 1996; 21:413–419 [View Article][PubMed]
    [Google Scholar]
  38. Lewis MJ, Pelham HR. Sequence of a second human KDEL receptor. J Mol Biol 1992; 226:913–916 [View Article][PubMed]
    [Google Scholar]
  39. Hsu VW, Shah N, Klausner RD. A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1. Cell 1992; 69:625–635 [View Article][PubMed]
    [Google Scholar]
  40. Collins JE, Wright CL, Edwards CA, Davis MP, Grinham JA et al. A genome annotation-driven approach to cloning the human ORFeome. Genome Biol 2004; 5:R84 [View Article][PubMed]
    [Google Scholar]
  41. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 2004; 36:40–45 [View Article][PubMed]
    [Google Scholar]
  42. Dean N, Pelham HR. Recycling of proteins from the Golgi compartment to the ER in yeast. J Cell Biol 1990; 111:369–377 [View Article][PubMed]
    [Google Scholar]
  43. Tekes G, Hofmann-Lehmann R, Stallkamp I, Thiel V, Thiel HJ. Genome organization and reverse genetic analysis of a type I feline coronavirus. J Virol 2008; 82:1851–1859 [View Article][PubMed]
    [Google Scholar]
  44. Tekes G, Hofmann-Lehmann R, Bank-Wolf B, Maier R, Thiel HJ et al. Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage. J Virol 2010; 84:1326–1333 [View Article][PubMed]
    [Google Scholar]
  45. Tekes G, Spies D, Bank-Wolf B, Thiel V, Thiel HJ. A reverse genetics approach to study feline infectious peritonitis. J Virol 2012; 86:6994–6998 [View Article][PubMed]
    [Google Scholar]
  46. Eriksson KK, Makia D, Thiel V. Generation of Recombinant Coronaviruses Using Vaccinia Virus as the Cloning Vector and Stable Cell Lines Containing Coronaviral Replicon RNAs. In Methods in Molecular Biology Clifton, NJ: Humana Press; 2008 pp. 237–254
    [Google Scholar]
  47. Hertzig T, Scandella E, Schelle B, Ziebuhr J, Siddell SG et al. Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. J Gen Virol 2004; 85:1717–1725 [View Article][PubMed]
    [Google Scholar]
  48. Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 1987; 166:368–379 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000879
Loading
/content/journal/jgv/10.1099/jgv.0.000879
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error