1887

Abstract

Despite the importance of neurological disorders associated with herpesviruses, the mechanism by which these viruses influence the central nervous system (CNS) has not been definitively established. Owing to the limitations of studying neuropathogenicity of human herpesviruses in their natural host, many aspects of their pathogenicity and immune response are studied in animal models. Here, we present an important model system that enables studying neuropathogenicity of herpesviruses in the natural host. Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus that causes a devastating neurological disease (EHV-1 myeloencephalopathy; EHM) in horses. Like other alphaherpesviruses, our understanding of virus neuropathogenicity in the natural host beyond the essential role of viraemia is limited. In particular, information on the role of different viral proteins for virus transfer to the spinal cord endothelium is lacking. In this study, the contribution of two viral proteins, DNA polymerase (ORF30) and glycoprotein D (gD), to the pathogenicity of EHM was addressed. Furthermore, different cellular immune markers, including alpha-interferon (IFN-α), gamma-interferon (IFN-γ), interleukin-10 (IL-10) and interleukin-1 beta (IL-1β), were identified to play a role during the course of the disease.

Keyword(s): EHM , EHV-1 , equine , glycoprotein D , Immunity and ORF30
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000773
2017-06-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/6/1439.html?itemId=/content/journal/jgv/10.1099/jgv.0.000773&mimeType=html&fmt=ahah

References

  1. Whitley RJ, Gnann JW. Viral encephalitis: familiar infections and emerging pathogens. Lancet 2002;359:507–513 [CrossRef][PubMed]
    [Google Scholar]
  2. Gilden DH, Mahalingam R, Cohrs RJ, Tyler KL. Herpesvirus infections of the nervous system. Nat Clin Pract Neurol 2007;3:82–94 [CrossRef][PubMed]
    [Google Scholar]
  3. Patel JR, Heldens J. Equine herpesviruses 1 (EHV-1) and 4 (EHV-4)epidemiology, disease and immunoprophylaxis: a brief review. Vet J 2005;170:14–23 [CrossRef][PubMed]
    [Google Scholar]
  4. Telford EA, Watson MS, McBride K, Davison AJ. The DNA sequence of equine herpesvirus-1. Virology 1992;189:304–316 [CrossRef][PubMed]
    [Google Scholar]
  5. Telford EA, Watson MS, Perry J, Cullinane AA, Davison AJ. The DNA sequence of equine herpesvirus-4. J Gen Virol 1998;79:1197–1203 [CrossRef][PubMed]
    [Google Scholar]
  6. Allen GP, Bryans JT. Molecular epizootiology, pathogenesis, and prophylaxis of equine herpesvirus-1 infections. Prog Vet Microbiol Immunol 1986;2:78–144[PubMed]
    [Google Scholar]
  7. Crabb BS, Studdert MJ. Equine herpesviruses 4 (equine rhinopneumonitis virus) and 1 (equine abortion virus). Adv Virus Res 1995;45:153–190[PubMed][CrossRef]
    [Google Scholar]
  8. Edington N, Bridges CG, Patel JR. Endothelial cell infection and thrombosis in paralysis caused by equid herpesvirus-1: equine stroke. Arch Virol 1986;90:111–124 [CrossRef][PubMed]
    [Google Scholar]
  9. Goehring LS, van Winden SC, van Maanen C, Sloet van Oldruitenborgh-Oosterbaan MM. Equine herpesvirus type 1-associated myeloencephalopathy in the netherlands: a four-year retrospective study (1999–2003). J Vet Intern Med 2006;20:601–607[PubMed]
    [Google Scholar]
  10. Hussey SB, Clark R, Lunn KF, Breathnach C, Soboll G et al. Detection and quantification of equine herpesvirus-1 viremia and nasal shedding by real-time polymerase chain reaction. J Vet Diagn Invest 2006;18:335–342 [CrossRef][PubMed]
    [Google Scholar]
  11. Soboll G, Hussey SB, Whalley JM, Allen GP, Koen MT et al. Antibody and cellular immune responses following DNA vaccination and EHV-1 infection of ponies. Vet Immunol Immunopathol 2006;111:81–95 [CrossRef][PubMed]
    [Google Scholar]
  12. Soboll G, Breathnach CC, Kydd JH, Hussey SB, Mealey RM et al. Vaccination of ponies with the IE gene of EHV-1 in a recombinant modified live vaccinia vector protects against clinical and virological disease. Vet Immunol Immunopathol 2010;135:108–117 [CrossRef][PubMed]
    [Google Scholar]
  13. Goehring LS, van Maanen C, Berendsen M, Cullinane A, de Groot RJ et al. Experimental infection with neuropathogenic equid herpesvirus type 1 (EHV-1) in adult horses. Vet J 2010;186:180–187 [CrossRef][PubMed]
    [Google Scholar]
  14. Allen GP, Breathnach CC. Quantification by real-time PCR of the magnitude and duration of leucocyte-associated viraemia in horses infected with neuropathogenic vs. non-neuropathogenic strains of EHV-1. Equine Vet J 2006;38:252–257 [CrossRef][PubMed]
    [Google Scholar]
  15. Nugent J, Birch-Machin I, Smith KC, Mumford JA, Swann Z et al. Analysis of equid herpesvirus 1 strain variation reveals a point mutation of the DNA polymerase strongly associated with neuropathogenic versus nonneuropathogenic disease outbreaks. J Virol 2006;80:4047–4060 [CrossRef][PubMed]
    [Google Scholar]
  16. Van de Walle GR, Goupil R, Wishon C, Damiani A, Perkins GA et al. A single-nucleotide polymorphism in a herpesvirus DNA polymerase is sufficient to cause lethal neurological disease. J Infect Dis 2009;200:20–25 [CrossRef][PubMed]
    [Google Scholar]
  17. Goodman LB, Loregian A, Perkins GA, Nugent J, Buckles EL et al. A point mutation in a herpesvirus polymerase determines neuropathogenicity. PLoS Pathog 2007;3:e160 [CrossRef][PubMed]
    [Google Scholar]
  18. Vandekerckhove AP, Glorieux S, Gryspeerdt AC, Steukers L, Duchateau L et al. Replication kinetics of neurovirulent versus non-neurovirulent equine herpesvirus type 1 strains in equine nasal mucosal explants. J Gen Virol 2010;91:2019–2028 [CrossRef][PubMed]
    [Google Scholar]
  19. Matsumura T, Sugiura T, Imagawa H, Fukunaga Y, Kamada M. Epizootiological aspects of type 1 and type 4 equine herpesvirus infections among horse populations. J Vet Med Sci 1992;54:207–211 [CrossRef][PubMed]
    [Google Scholar]
  20. Osterrieder N, Van de Walle GR. Pathogenic potential of equine alphaherpesviruses: the importance of the mononuclear cell compartment in disease outcome. Vet Microbiol 2010;143:21–28 [CrossRef][PubMed]
    [Google Scholar]
  21. Verheyen K, Newton JR, Wood JL, Birch-Machin I, Hannant D et al. Possible case of EHV-4 ataxia in warmblood mare. Vet Rec 1998;143:456[PubMed]
    [Google Scholar]
  22. Vandekerckhove AP, Glorieux S, Gryspeerdt AC, Steukers L, Van Doorsselaere J et al. Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants. Vet Microbiol 2011;152:21–28 [CrossRef][PubMed]
    [Google Scholar]
  23. Sattentau Q. Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 2008;6:815–826 [CrossRef][PubMed]
    [Google Scholar]
  24. Campadelli-Fiume G, Amasio M, Avitabile E, Cerretani A, Forghieri C et al. The multipartite system that mediates entry of herpes simplex virus into the cell. Rev Med Virol 2007;17:313–326 [CrossRef][PubMed]
    [Google Scholar]
  25. Spear PG. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 2004;6:401–410 [CrossRef][PubMed]
    [Google Scholar]
  26. Alves Dummer L., Pereira Leivas leite F, Van Drunen Littel-van Den Hurk S. Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 2014;45:111[CrossRef]
    [Google Scholar]
  27. Sasaki M, Hasebe R, Makino Y, Suzuki T, Fukushi H et al. Equine major histocompatibility complex class I molecules act as entry receptors that bind to equine herpesvirus-1 glycoprotein D. Genes Cells 2011;16:343–357 [CrossRef][PubMed]
    [Google Scholar]
  28. Azab W, Osterrieder N. Glycoproteins D of equine herpesvirus type 1 (EHV-1) and EHV-4 determine cellular tropism independently of integrins. J Virol 2012;86:2031–2044 [CrossRef][PubMed]
    [Google Scholar]
  29. Soboll Hussey G, Hussey SB, Wagner B, Horohov DW, Van de Walle GR et al. Evaluation of immune responses following infection of ponies with an EHV-1 ORF1/2 deletion mutant. Vet Res 2011;42:23 [CrossRef][PubMed]
    [Google Scholar]
  30. Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005;69:462–500 [CrossRef][PubMed]
    [Google Scholar]
  31. Gardiner DW, Lunn DP, Goehring LS, Chiang YW, Cook C et al. Strain impact on equine herpesvirus type 1 (EHV-1) abortion models: viral loads in fetal and placental tissues and foals. Vaccine 2012;30:6564–6572 [CrossRef][PubMed]
    [Google Scholar]
  32. Allen GP. Risk factors for development of neurologic disease after experimental exposure to equine herpesvirus-1 in horses. Am J Vet Res 2008;69:1595–1600 [CrossRef][PubMed]
    [Google Scholar]
  33. Goodman LB, Wagner B, Flaminio MJ, Sussman KH, Metzger SM et al. Comparison of the efficacy of inactivated combination and modified-live virus vaccines against challenge infection with neuropathogenic equine herpesvirus type 1 (EHV-1). Vaccine 2006;24:3636–3645 [CrossRef][PubMed]
    [Google Scholar]
  34. Quintana AM, Landolt GA, Annis KM, Hussey GS. Immunological characterization of the equine airway epithelium and of a primary equine airway epithelial cell culture model. Vet Immunol Immunopathol 2011;140:226–236 [CrossRef][PubMed]
    [Google Scholar]
  35. Soboll Hussey G, Ashton LV, Quintana AM, Van de Walle GR, Osterrieder N et al. Equine herpesvirus type 1 pUL56 modulates innate responses of airway epithelial cells. Virology 2014;464-465:76–86 [CrossRef][PubMed]
    [Google Scholar]
  36. Kydd JH, Slater J, Osterrieder N, Lunn DP, Antczak DF et al. Third international Havemeyer workshop on equine herpesvirus type 1. Equine Vet J 2012;44:513–517 [CrossRef][PubMed]
    [Google Scholar]
  37. Spiesschaert B, Goldenbogen B, Taferner S, Schade M, Mahmoud M et al. Role of gB and pUS3 in equine herpesvirus 1 transfer between peripheral blood mononuclear cells and endothelial cells: a dynamic in vitro model. J Virol 2015;89:11899–11908 [CrossRef][PubMed]
    [Google Scholar]
  38. Awasthi S, Lubinski JM, Eisenberg RJ, Cohen GH, Friedman HM. An HSV-1 gD mutant virus as an entry-impaired live virus vaccine. Vaccine 2008;26:1195–1203 [CrossRef][PubMed]
    [Google Scholar]
  39. Petro C, González PA, Cheshenko N, Jandl T, Khajoueinejad N et al. Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease. Elife 2015;4:e06054 [CrossRef][PubMed]
    [Google Scholar]
  40. Schmidt J, Gerdts V, Beyer J, Klupp BG, Mettenleiter TC. Glycoprotein D-independent infectivity of pseudorabies virus results in an alteration of in vivo host range and correlates with mutations in glycoproteins B and H. J Virol 2001;75:10054–10064 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhao W, Spatz S, Zhang Z, Wen G, Garcia M et al. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges. J Virol 2014;88:8397–8406 [CrossRef][PubMed]
    [Google Scholar]
  42. Pusterla N, Hussey SB, Mapes S, Leutenegger CM, Madigan JE et al. Comparison of four methods to quantify Equid herpesvirus 1 load by real-time polymerase chain reaction in nasal secretions of experimentally and naturally infected horses. J Vet Diagn Invest 2009;21:836–840 [CrossRef][PubMed]
    [Google Scholar]
  43. Burgess BA, Tokateloff N, Manning S, Lohmann K, Lunn DP et al. Nasal shedding of equine herpesvirus-1 from horses in an outbreak of equine herpes myeloencephalopathy in Western Canada. J Vet Intern Med 2012;26:384–392 [CrossRef][PubMed]
    [Google Scholar]
  44. Mumford EL, Traub-Dargatz JL, Carman J, Callan RJ, Collins JK et al. Occurrence of infectious upper respiratory tract disease and response to vaccination in horses on six sentinel premises in northern Colorado. Equine Vet J 2003;35:72–77 [CrossRef][PubMed]
    [Google Scholar]
  45. Bastos MS, Coelho-Dos-Reis JG, Zauli DA, Naveca FG, Monte RL et al. Divergent cerebrospinal fluid cytokine network induced by non-viral and different viral infections on the central nervous system. BMC Infect Dis 2015;15:345 [CrossRef][PubMed]
    [Google Scholar]
  46. Pusterla N, Wilson WD, Conrad PA, Barr BC, Ferraro GL et al. Cytokine gene signatures in neural tissue of horses with equine protozoal myeloencephalitis or equine herpes type 1 myeloencephalopathy. Vet Rec 2006;159:341–345 [CrossRef][PubMed]
    [Google Scholar]
  47. Lewandowski G, Hobbs M, Geller A. Evidence that deficient IFN-γ production is a biological basis of herpes simplex virus type-2 neurovirulence. J Neuroimmunol 1998;81:66–75 [CrossRef][PubMed]
    [Google Scholar]
  48. Cantin E, Tanamachi B, Openshaw H. Role for gamma interferon in control of herpes simplex virus type 1 reactivation. J Virol 1999;73:3418–3423[PubMed]
    [Google Scholar]
  49. Mikloska Z, Cunningham AL. Alpha and gamma interferons inhibit herpes simplex virus type 1 infection and spread in epidermal cells after axonal transmission. J Virol 2001;75:11821–11826 [CrossRef][PubMed]
    [Google Scholar]
  50. Milligan GN, Bernstein DI. Interferon-gamma enhances resolution of herpes simplex virus type 2 infection of the murine genital tract. Virology 1997;229:259–268 [CrossRef][PubMed]
    [Google Scholar]
  51. Smith PM, Wolcott RM, Chervenak R, Jennings SR. Control of acute cutaneous herpes simplex virus infection: T cell-mediated viral clearance is dependent upon interferon-γ (IFN-γ). Virology 1994;202:76–88 [CrossRef][PubMed]
    [Google Scholar]
  52. Sawada M, Suzumura A, Hosoya H, Marunouchi T, Nagatsu T. Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem 1999;72:1466–1471 [CrossRef][PubMed]
    [Google Scholar]
  53. Suzumura A, Sawada M, Itoh Y, Marunouchi T. Interleukin-4 induces proliferation and activation of microglia but suppresses their induction of class II major histocompatibility complex antigen expression. J Neuroimmunol 1994;53:209–218 [CrossRef][PubMed]
    [Google Scholar]
  54. Suzumura A, Sawada M, Yamamoto H, Marunouchi T. Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 1993;151:2150–2158[PubMed]
    [Google Scholar]
  55. Rappocciolo G, Birch J, Ellis SA. Down-regulation of MHC class I expression by equine herpesvirus-1. J Gen Virol 2003;84:293–300 [CrossRef][PubMed]
    [Google Scholar]
  56. Hsu DH, de Waal Malefyt R, Fiorentino DF, Dang MN, Vieira P et al. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science 1990;250:830–832 [CrossRef][PubMed]
    [Google Scholar]
  57. Rode HJ, Janssen W, Rösen-Wolff A, Bugert JJ, Thein P et al. The genome of equine herpesvirus type 2 harbors an interleukin 10 (IL10)-like gene. Virus Genes 1993;7:111–116 [CrossRef][PubMed]
    [Google Scholar]
  58. Leopold PL. Cell physiology as a variable in gene transfer to endothelium. Curr Atheroscler Rep 2003;5:171–177 [CrossRef][PubMed]
    [Google Scholar]
  59. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994;84:2068–2101[PubMed]
    [Google Scholar]
  60. Pober JS, Cotran RS. Cytokines and endothelial cell biology. Physiol Rev 1990;70:427–451[PubMed]
    [Google Scholar]
  61. Edington N, Bridges CG, Griffiths L. Equine interferons following exposure to equid herpesvirus-1 or -4. J Interferon Res 1989;9:389–392 [CrossRef][PubMed]
    [Google Scholar]
  62. Ito T, Wang YH, Liu YJ. Plasmacytoid dendritic cell precursors/type I interferon-producing cells sense viral infection by Toll-like receptor (TLR) 7 and TLR9. Springer Semin Immunopathol 2005;26:221–229 [CrossRef][PubMed]
    [Google Scholar]
  63. Lin R, Noyce RS, Collins SE, Everett RD, Mossman KL. The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 2004;78:1675–1684 [CrossRef][PubMed]
    [Google Scholar]
  64. Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 2001;65:131–150 [CrossRef][PubMed]
    [Google Scholar]
  65. Turin L, Russo S, Poli G. BHV-1: new molecular approaches to control a common and widespread infection. Mol Med 1999;5:261–284[PubMed]
    [Google Scholar]
  66. Flamand L, Gosselin J, D'Addario M, Hiscott J, Ablashi DV et al. Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. J Virol 1991;65:5105–5110[PubMed]
    [Google Scholar]
  67. Zhang Y, Smith PM, Frampton AR, Osterrieder N, Jennings SR et al. Cytokine profiles and long-term virus-specific antibodies following immunization of CBA mice with equine herpesvirus 1 and viral glycoprotein D. Viral Immunol 2003;16:307–320 [CrossRef][PubMed]
    [Google Scholar]
  68. Crowhurst FA, Dickinson G, Burrows R. An outbreak of paresis in mares and geldings associated with equid herpesvirus 1. Vet Rec 1981;109:527–528[PubMed]
    [Google Scholar]
  69. Tischer BK, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 2006;40:191–197[PubMed][CrossRef]
    [Google Scholar]
  70. von Einem J, Smith PM, Van de Walle GR, O'Callaghan DJ, Osterrieder N. In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology 2007;362:151–162 [CrossRef][PubMed]
    [Google Scholar]
  71. Azab W, Tsujimura K, Maeda K, Kobayashi K, Mohamed YM et al. Glycoprotein C of equine herpesvirus 4 plays a role in viral binding to cell surface heparan sulfate. Virus Res 2010;151:1–9 [CrossRef][PubMed]
    [Google Scholar]
  72. Soboll G, Horohov DW, Aldridge BM, Olsen CW, McGregor MW et al. Regional antibody and cellular immune responses to equine influenza virus infection, and particle mediated DNA vaccination. Vet Immunol Immunopathol 2003;94:47–62 [CrossRef][PubMed]
    [Google Scholar]
  73. Pease A, Behan A, Bohart G. Ultrasound-guided cervical centesis to obtain cerebrospinal fluid in the standing horse. Vet Radiol Ultrasound 2012;53:92–95 [CrossRef][PubMed]
    [Google Scholar]
  74. Breathnach CC, Rudersdorf R, Lunn DP. Use of recombinant modified vaccinia Ankara viral vectors for equine influenza vaccination. Vet Immunol Immunopathol 2004;98:127–136 [CrossRef][PubMed]
    [Google Scholar]
  75. Wagner B, Freer H. Development of a bead-based multiplex assay for simultaneous quantification of cytokines in horses. Vet Immunol Immunopathol 2009;127:242–248 [CrossRef][PubMed]
    [Google Scholar]
  76. Center MHGER 2017; Equine immunology resource page. http://www.ca.uky.edu/Gluck/HorohovDW_EIRClonedCytokines.asp
  77. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001;25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  78. Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM et al. A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J Virol 2007;81:13200–13208 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000773
Loading
/content/journal/jgv/10.1099/jgv.0.000773
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error