1887

Abstract

Lentiviruses threaten human and animal health. Virion infectivity factor (Vif) is essential for the infectivity of most lentiviruses, except for the equine infectious anaemia virus (EIAV). Vif promotes viral infectivity by recruiting a Cullin-based E3 ligase to induce the degradation of a class of host restriction factors, named APOBEC3. Core binding factor beta (CBF-β) is necessary for several primate lentiviral Vif functions, including HIV-1 Vif. Although much progress has been made in understanding the contribution of CBF-β to Vif function, the precise mechanism has not yet been fully elucidated. In this study, we found that an interaction with CBF-β altered the oligomerization and subcellular distribution pattern and increased the stability of two primate lentiviral Vifs, HIV-1 Vif and Macaca simian immunodeficiency virus (SIVmac) Vif. Moreover, using a CBF-β loss-of-function mutant, we demonstrated that the interaction between CBF-β and Vif was not sufficient for Vif assistance; a region including F68 in CBF-β was also required for the stability and function of Vif. For the first time, this study separates the binding and regulating processes of CBF-β when it is promoting Vif function, which further extends our understanding of the biochemical regulation of Vif by CBF-β.

Keyword(s): APOBEC3 , CBF-β , HIV-1 , lentivirus , SIVmac and vif
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000749
2017-05-18
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/5/1113.html?itemId=/content/journal/jgv/10.1099/jgv.0.000749&mimeType=html&fmt=ahah

References

  1. Ai Y, Zhu D, Wang C, Su C, Ma J et al. Core-binding factor subunit beta is not required for non-primate lentiviral Vif-mediated APOBEC3 degradation. J Virol 2014;88:12112–12122 [CrossRef][PubMed]
    [Google Scholar]
  2. Zhang Z, Gu Q, Jaguva Vasudevan AA, Hain A, Kloke BP et al. Determinants of FIV and HIV Vif sensitivity of feline APOBEC3 restriction factors. Retrovirology 2016;13:46 [CrossRef][PubMed]
    [Google Scholar]
  3. Bogerd HP, Tallmadge RL, Oaks JL, Carpenter S, Cullen BR. Equine infectious anemia virus resists the antiretroviral activity of equine APOBEC3 proteins through a packaging-independent mechanism. J Virol 2008;82:11889–11901 [CrossRef][PubMed]
    [Google Scholar]
  4. Zielonka J, Bravo IG, Marino D, Conrad E, Perković M et al. Restriction of equine infectious anemia virus by equine APOBEC3 cytidine deaminases. J Virol 2009;83:7547–7559 [CrossRef][PubMed]
    [Google Scholar]
  5. Du J, Zhao K, Rui Y, Li P, Zhou X et al. Differential requirements for HIV-1 Vif-mediated APOBEC3G degradation and RUNX1-mediated transcription by core binding factor beta. J Virol 2013;87:1906–1911 [CrossRef][PubMed]
    [Google Scholar]
  6. Larue RS, Lengyel J, Jónsson SR, Andrésdóttir V, Harris RS. Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J Virol 2010;84:8193–8201 [CrossRef][PubMed]
    [Google Scholar]
  7. Luo K, Xiao Z, Ehrlich E, Yu Y, Liu B et al. Primate lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5-E3 ligase through a HCCH motif to suppress APOBEC3G. Proc Natl Acad Sci USA 2005;102:11444–11449 [CrossRef][PubMed]
    [Google Scholar]
  8. Yu X, Yu Y, Liu B, Luo K, Kong W et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 2003;302:1056–1060 [CrossRef][PubMed]
    [Google Scholar]
  9. Wang X, Wang X, Wang W, Zhang J, Wang J et al. Both Rbx1 and Rbx2 exhibit a functional role in the HIV-1 Vif-Cullin5 E3 ligase complex in vitro. Biochem Biophys Res Commun 2015;461:624–629 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang Z, Gu Q, Jaguva Vasudevan AA, Jeyaraj M, Schmidt S et al. Vif proteins from diverse human immunodeficiency virus/simian immunodeficiency virus lineages have distinct binding sites in A3C. J Virol 2016;90:10193–10208 [CrossRef][PubMed]
    [Google Scholar]
  11. Gu Q, Zhang Z, Cano Ortiz L, Franco AC, Häussinger D et al. Feline immunodeficiency virus Vif N-terminal residues selectively counteract feline APOBEC3s. J Virol 2016;90:10545–10557 [CrossRef][PubMed]
    [Google Scholar]
  12. Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK et al. DNA deamination mediates innate immunity to retroviral infection. Cell 2003;113:803–809 [CrossRef][PubMed]
    [Google Scholar]
  13. Hultquist JF, Lengyel JA, Refsland EW, Larue RS, Lackey L et al. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 2011;85:11220–11234 [CrossRef][PubMed]
    [Google Scholar]
  14. Han X, Liang W, Hua D, Zhou X, du J et al. Evolutionarily conserved requirement for core binding factor beta in the assembly of the human immunodeficiency virus/simian immunodeficiency virus Vif-cullin 5-RING E3 ubiquitin ligase. J Virol 2014;88:3320–3328 [CrossRef][PubMed]
    [Google Scholar]
  15. Hultquist JF, Binka M, Larue RS, Simon V, Harris RS. Vif proteins of human and simian immunodeficiency viruses require cellular CBFβ to degrade APOBEC3 restriction factors. J Virol 2012;86:2874–2877 [CrossRef][PubMed]
    [Google Scholar]
  16. Jager S, Kim DY, Hultquist JF, Shindo K, Larue RS et al. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 2012;481:371–375
    [Google Scholar]
  17. Yoshikawa R, Nakano Y, Yamada E, Izumi T, Misawa N et al. Species-specific differences in the ability of feline lentiviral Vif to degrade feline APOBEC3 proteins. Microbiol Immunol 2016;60:272–279 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhang W, Du J, Evans SL, Yu Y, Xf Y. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature 2012;481:376–379
    [Google Scholar]
  19. Anderson BD, Harris RS. Transcriptional regulation of APOBEC3 antiviral immunity through the CBF-β/RUNX axis. Sci Adv 2015;1:e1500296 [CrossRef][PubMed]
    [Google Scholar]
  20. Fribourgh JL, Nguyen HC, Wolfe LS, Dewitt DC, Zhang W et al. Core binding factor beta plays a critical role by facilitating the assembly of the Vif-cullin 5 E3 ubiquitin ligase. J Virol 2014;88:3309–3319 [CrossRef][PubMed]
    [Google Scholar]
  21. Miyagi E, Kao S, Yedavalli V, Strebel K. CBFβ enhances de novo protein biosynthesis of its binding partners HIV-1 Vif and RUNX1 and potentiates the Vif-induced degradation of APOBEC3G. J Virol 2014;88:4839–4852 [CrossRef][PubMed]
    [Google Scholar]
  22. Salter JD, Lippa GM, Belashov IA, Wedekind JE. Core-binding factor β increases the affinity between human Cullin 5 and HIV-1 Vif within an E3 ligase complex. Biochemistry 2012;51:8702–8704 [CrossRef][PubMed]
    [Google Scholar]
  23. Wang X, Wang X, Zhang H, Lv M, Zuo T et al. Interactions between HIV-1 Vif and human ElonginB-ElonginC are important for CBF-β binding to Vif. Retrovirology 2013;10:94 [CrossRef][PubMed]
    [Google Scholar]
  24. Guo Y, Dong L, Qiu X, Wang Y, Zhang B et al. Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif. Nature 2014;505:229–233 [CrossRef][PubMed]
    [Google Scholar]
  25. Matsui Y, Shindo K, Nagata K, Io K, Tada K et al. Defining HIV-1 Vif residues that interact with CBFβ by site-directed mutagenesis. Virology 2014;449:82–87 [CrossRef][PubMed]
    [Google Scholar]
  26. Wang H, Liu B, Liu X, Li Z, Yu XF, Xf Y et al. Identification of HIV-1 Vif regions required for CBF-β interaction and APOBEC3 suppression. PLoS One 2014;9:e95738 [CrossRef][PubMed]
    [Google Scholar]
  27. Wang H, Lv G, Zhou X, Li Z, Liu X et al. Requirement of HIV-1 Vif C-terminus for Vif-CBF-β interaction and assembly of CUL5-containing E3 ligase. BMC Microbiol 2014;14:290 [CrossRef][PubMed]
    [Google Scholar]
  28. Yoshikawa R, Takeuchi JS, Yamada E, Nakano Y, Ren F et al. Vif determines the requirement for CBF-β in APOBEC3 degradation. J Gen Virol 2015;96:887–892 [CrossRef][PubMed]
    [Google Scholar]
  29. Zhou X, Evans SL, Han X, Liu Y, Yu XF et al. Characterization of the interaction of full-length HIV-1 Vif protein with its key regulator CBFβ and CRL5 E3 ubiquitin ligase components. PLoS One 2012;7:e33495 [CrossRef][PubMed]
    [Google Scholar]
  30. Zhou X, Han X, Zhao K, Du J, Evans SL et al. Dispersed and conserved hydrophobic residues of HIV-1 Vif are essential for CBFβ recruitment and A3G suppression. J Virol 2014;88:2555–2563 [CrossRef][PubMed]
    [Google Scholar]
  31. Hultquist JF, McDougle RM, Anderson BD, Harris RS. HIV type 1 viral infectivity factor and the RUNX transcription factors interact with core binding factor β on genetically distinct surfaces. AIDS Res Hum Retroviruses 2012;28:1543–1551 [CrossRef][PubMed]
    [Google Scholar]
  32. Batisse J, Guerrero SX, Bernacchi S, Richert L, Godet J et al. APOBEC3G impairs the multimerization of the HIV-1 Vif protein in living cells. J Virol 2013;87:6492–6506 [CrossRef][PubMed]
    [Google Scholar]
  33. Ai Y, Ma J. Multiple lysines combined in HIV-1 Vif determines the responsiveness to CBF-β. Biochem Biophys Res Commun 2015;457:385–390 [CrossRef][PubMed]
    [Google Scholar]
  34. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002;418:646–650 [CrossRef][PubMed]
    [Google Scholar]
  35. Malim MH. HIV: ringside views. Nature 2014;505:167–168 [CrossRef][PubMed]
    [Google Scholar]
  36. Kim DY, Kwon E, Hartley PD, Crosby DC, Mann S et al. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol Cell 2013;49:632–644 [CrossRef][PubMed]
    [Google Scholar]
  37. Izumi T, Takaori-Kondo A, Shirakawa K, Higashitsuji H, Itoh K et al. MDM2 is a novel E3 ligase for HIV-1 Vif. Retrovirology 2009;6:1 [CrossRef][PubMed]
    [Google Scholar]
  38. Matsui Y, Shindo K, Nagata K, Yoshinaga N, Shirakawa K et al. Core binding factor β protects HIV, type 1 accessory protein viral infectivity factor from MDM2-mediated degradation. J Biol Chem 2016;291:24892–24899 [CrossRef][PubMed]
    [Google Scholar]
  39. Mehle A, Goncalves J, Santa-Marta M, McPike M, Gabuzda D. Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev 2004;18:2861–2866 [CrossRef][PubMed]
    [Google Scholar]
  40. Dang Y, Siew LM, Zheng YH. APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent manner without being polyubiquitylated. J Biol Chem 2008;283:13124–13131 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000749
Loading
/content/journal/jgv/10.1099/jgv.0.000749
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error