1887

Abstract

The human papillomavirus (HPV) L2 capsid protein plays an essential role during the early stages of viral infection. Previous studies have shown that the interaction between HPV L2 and endosomal sorting nexin 17 (SNX17) is conserved across multiple PV types where it plays an essential role in infectious entry, suggesting an evolutionarily conserved pathway of PV trafficking. Here we show that the peak time of interaction between HPV-16 L2 and SNX17 is rather early, at 2 h post-infection. Interestingly, the L2–SNX17 interaction appears to be important for facilitating capsid disassembly and L1 dissociation, suggesting that L2 recruitment of SNX17 occurs prior to capsid disassembly. Furthermore, we also found evidence of L2–SNX17 association at the later stages of infectious entry, suggesting that the SNX17-mediated sorting machinery is either involved at different stages of HPV trafficking or that L2–SNX17 interaction is a long-lasting event in HPV trafficking.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000734
2017-04-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/4/715.html?itemId=/content/journal/jgv/10.1099/jgv.0.000734&mimeType=html&fmt=ahah

References

  1. Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 2007;121:621–632 [CrossRef][PubMed]
    [Google Scholar]
  2. Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC et al. Arrangement of L2 within the papillomavirus capsid. J Virol 2008;82:5190–5197 [CrossRef][PubMed]
    [Google Scholar]
  3. Wang JW, Roden RBS. L2, the minor capsid protein of papillomavirus. Virology 2013;445:175–186 [CrossRef]
    [Google Scholar]
  4. Buck CB, Thompson CD, Pang YY, Lowy DR, Schiller JT. Maturation of papillomavirus capsids. J Virol 2005;79:2839–2846 [CrossRef][PubMed]
    [Google Scholar]
  5. Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED et al. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 1999;274:5810–5822 [CrossRef][PubMed]
    [Google Scholar]
  6. Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol 2001;75:1565–1570 [CrossRef][PubMed]
    [Google Scholar]
  7. Day PM, Lowy DR, Schiller JT. Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J Virol 2008;82:12565–12568 [CrossRef][PubMed]
    [Google Scholar]
  8. Yang R, Day PM, Yutzy WH, Lin KY, Hung CF et al. Cell surface-binding motifs of L2 that facilitate papillomavirus infection. J Virol 2003;77:3531–3541 [CrossRef][PubMed]
    [Google Scholar]
  9. Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 2012;8:e1002657 [CrossRef][PubMed]
    [Google Scholar]
  10. Bousarghin L, Touzé A, Sizaret PY, Coursaget P. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 2003;77:3846–3850 [CrossRef][PubMed]
    [Google Scholar]
  11. Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol 2010;118:S12–S17 [CrossRef][PubMed]
    [Google Scholar]
  12. Kämper N, Day PM, Nowak T, Selinka HC, Florin L et al. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 2006;80:759–768 [CrossRef][PubMed]
    [Google Scholar]
  13. Smith JL, Campos SK, Wandinger-Ness A, Ozbun MA. Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating. J Virol 2008;82:9505–9512 [CrossRef][PubMed]
    [Google Scholar]
  14. Dabydeen SA, Meneses PI. The role of NH4Cl and cysteine proteases in human papillomavirus type 16 infection. Virol J 2009;6:109 [CrossRef][PubMed]
    [Google Scholar]
  15. Bienkowska-Haba M, Williams C, Kim SM, Garcea RL, Sapp M. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein L1 from the L2/DNA complex following virus entry. J Virol 2012;86:9875–9887 [CrossRef][PubMed]
    [Google Scholar]
  16. Day PM, Thompson CD, Schowalter RM, Lowy DR, Schiller JT. Identification of a role for the trans-Golgi network in human papillomavirus 16 pseudovirus infection. J Virol 2013;87:3862–3870 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang W, Kazakov T, Popa A, Dimaio D. Vesicular trafficking of incoming human papillomavirus 16 to the Golgi apparatus and endoplasmic reticulum requires γ-secretase activity. MBio 2014;5:e01777–14 [CrossRef][PubMed]
    [Google Scholar]
  18. Pyeon D, Pearce SM, Lank SM, Ahlquist P, Lambert PF. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 2009;5:e1000318 [CrossRef][PubMed]
    [Google Scholar]
  19. Aydin I, Weber S, Snijder B, Samperio Ventayol P, Kühbacher A et al. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS Pathog 2014;10:e1004162 [CrossRef][PubMed]
    [Google Scholar]
  20. Broniarczyk J, Massimi P, Bergant M, Banks L. Human papillomavirus infectious entry and trafficking is a rapid process. J Virol 2015;89:8727–8732 [CrossRef][PubMed]
    [Google Scholar]
  21. Bergant Marušič M, Ozbun MA, Campos SK, Myers MP, Banks L. Human papillomavirus L2 facilitates viral escape from late endosomes via sorting nexin 17. Traffic 2012;13:455–467 [CrossRef][PubMed]
    [Google Scholar]
  22. Lipovsky A, Popa A, Pimienta G, Wyler M, Bhan A et al. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc Natl Acad Sci USA 2013;110:7452–7457 [CrossRef][PubMed]
    [Google Scholar]
  23. Popa A, Zhang W, Harrison MS, Goodner K, Kazakov T et al. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLoS Pathog 2015;11:e1004699 [CrossRef][PubMed]
    [Google Scholar]
  24. Day PM, Thompson CD, Pang YY, Lowy DR, Schiller JT. Involvement of nucleophosmin (NPM1/B23) in assembly of infectious HPV16 capsids. Papillomavirus Res 2015;1:74–89 [CrossRef][PubMed]
    [Google Scholar]
  25. Florin L, Becker KA, Lambert C, Nowak T, Sapp C et al. Identification of a dynein interacting domain in the papillomavirus minor capsid protein l2. J Virol 2006;80:6691–6696 [CrossRef][PubMed]
    [Google Scholar]
  26. Karanam B, Peng S, Li T, Buck C, Day PM et al. Papillomavirus infection requires γ secretase. J Virol 2010;84:10661–10670 [CrossRef][PubMed]
    [Google Scholar]
  27. Pim D, Broniarczyk J, Bergant M, Playford MP, Banks L. A novel PDZ domain interaction mediates the binding between human papillomavirus 16 L2 and sorting nexin 27 and modulates virion trafficking. J Virol 2015;89:10145–10155 [CrossRef][PubMed]
    [Google Scholar]
  28. Broniarczyk J, Bergant M, Goździcka-Józefiak A, Banks L. Human papillomavirus infection requires the TSG101 component of the ESCRT machinery. Virology 2014;460–461:83–90 [CrossRef][PubMed]
    [Google Scholar]
  29. Bergant M, Banks L. SNX17 facilitates infection with diverse papillomavirus types. J Virol 2013;87:1270–1273 [CrossRef]
    [Google Scholar]
  30. Seet LF, Hong W. The Phox (PX) domain proteins and membrane traffic. Biochim Biophys Acta 1761;2006:878–896
    [Google Scholar]
  31. Cullen PJ. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 2008;9:574–582 [CrossRef][PubMed]
    [Google Scholar]
  32. Stockinger W, Sailler B, Strasser V, Recheis B, Fasching D et al. The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. Embo J 2002;21:4259–4267 [CrossRef][PubMed]
    [Google Scholar]
  33. Burden JJ, Sun XM, García AB, Soutar AK. Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J Biol Chem 2004;279:16237–16245 [CrossRef][PubMed]
    [Google Scholar]
  34. Böttcher RT, Stremmel C, Meves A, Meyer H, Widmaier M et al. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat Cell Biol 2012;14:584–592 [CrossRef][PubMed]
    [Google Scholar]
  35. Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2011;14:29–37 [CrossRef][PubMed]
    [Google Scholar]
  36. Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L et al. The evolving field of human papillomavirus receptor research: a review of binding and entry. J Virol 2013;87:6062–6072 [CrossRef][PubMed]
    [Google Scholar]
  37. Teasdale RD, Collins BM. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2012;441:39–59 [CrossRef][PubMed]
    [Google Scholar]
  38. Cerqueira C, Samperio Ventayol P, Vogeley C, Schelhaas M. Kallikrein-8 proteolytically processes human papillomaviruses in the extracellular space to facilitate entry into host cells. J Virol 2015;89:7038–7052 [CrossRef][PubMed]
    [Google Scholar]
  39. Ghai R, Bugarcic A, Liu H, Norwood SJ, Skeldal S et al. Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins. Proc Natl Acad Sci USA 2013;110:E643E652 [CrossRef][PubMed]
    [Google Scholar]
  40. Digiuseppe S, Luszczek W, Keiffer TR, Bienkowska-Haba M, Guion LG et al. Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proc Natl Acad Sci USA 2016;113:6289–6294 [CrossRef][PubMed]
    [Google Scholar]
  41. Bronnimann MP, Chapman JA, Park CK, Campos SK. A transmembrane domain and GxxxG motifs within L2 are essential for papillomavirus infection. J Virol 2013;87:464–473 [CrossRef][PubMed]
    [Google Scholar]
  42. DiGiuseppe S, Keiffer TR, Bienkowska-Haba M, Luszczek W, Guion LG et al. Topography of the human papillomavirus minor capsid protein L2 during vesicular trafficking of infectious entry. J Virol 2015;89:10442–10452 [CrossRef][PubMed]
    [Google Scholar]
  43. DiGiuseppe S, Bienkowska-Haba M, Hilbig L, Sapp M. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network. Virology 2014;458–459:93–105 [CrossRef][PubMed]
    [Google Scholar]
  44. Buck CB, Pastrana DV, Lowy DR, Schiller JT. Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Mol Med 2005;119:445–462 [CrossRef][PubMed]
    [Google Scholar]
  45. Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 1973;52:456–467 [CrossRef][PubMed]
    [Google Scholar]
  46. Smith JL, Campos SK, Ozbun MA. Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol 2007;81:9922–9931 [CrossRef][PubMed]
    [Google Scholar]
  47. Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int 2004;11:36–42
    [Google Scholar]
  48. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 2006;224:213–232 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000734
Loading
/content/journal/jgv/10.1099/jgv.0.000734
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error