1887

Abstract

Substitutions in the PA N-terminus (PAN) of influenza A viruses are associated with viral pathogenicity. During our previous study, which identified PAN-V63I and -A37S/I61T/V63I/V100A substitutions as virulence determinants, we observed a severe decrease in virus growth and transcription/replication capacity posed by PAN-A37S/V100A substitution. To further delineate the significance of substitutions at these positions, we generated mutant H7N7 viruses bearing the substitutions PAN-A37S, -A37S/I61T, -A37S/V63I, -V100A, -I61T/V100A and -V63I/V100A by reverse genetics. Our results showed that all mutant viruses except PAN-V100A showed a significantly reduced growth capability in infected cells. At the same time, the PAN-A37S, -A37S/I61T and -A37S/V63I mutant viruses displayed decreased viral transcription and replication by diminishing virus RNA synthesis activity. Biochemical assays indicated that the substitutions PAN-A37S, -A37S/I61T and -A37S/V63I suppressed the polymerase and endonuclease activities when compared with those of the wild-type. Together, our results demonstrated that the PAN-A37S, -A37S/I61T and -A37S/V63I substitutions contributed to a decreased pathogenicity of avian H7N7 influenza A virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000717
2017-04-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/3/364.html?itemId=/content/journal/jgv/10.1099/jgv.0.000717&mimeType=html&fmt=ahah

References

  1. Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480: 234– 246 [CrossRef] [PubMed]
    [Google Scholar]
  2. Naffakh N, Tomoiu A, Rameix-Welti MA, van der Werf S. Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annu Rev Microbiol 2008; 62: 403– 424 [CrossRef] [PubMed]
    [Google Scholar]
  3. Belser JA, Bridges CB, Katz JM, Tumpey TM. Past, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis 2009; 15: 859– 865 [CrossRef] [PubMed]
    [Google Scholar]
  4. Nakajima K, Desselberger U, Palese P. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 1978; 274: 334– 339 [CrossRef] [PubMed]
    [Google Scholar]
  5. Reid AH, Fanning TG, Hultin JV, Taubenberger JK. Origin and evolution of the 1918 ‘Spanish’ influenza virus hemagglutinin gene. Proc Natl Acad Sci USA 1999; 96: 1651– 1656 [CrossRef] [PubMed]
    [Google Scholar]
  6. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science 2009; 324: 1557– 1561 [CrossRef] [PubMed]
    [Google Scholar]
  7. Subbarao K, Klimov A, Katz J, Regnery H, Lim W et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 1998; 279: 393– 396 [CrossRef] [PubMed]
    [Google Scholar]
  8. Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA 2004; 101: 1356– 1361 [CrossRef] [PubMed]
    [Google Scholar]
  9. Gao HN, Lu HZ, Cao B, du B, Shang H et al. Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med 2013; 368: 2277– 2285 [CrossRef] [PubMed]
    [Google Scholar]
  10. Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010; 7: 440– 451 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kash JC, Taubenberger JK. The role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am J Pathol 2015; 185: 1528– 1536 [CrossRef] [PubMed]
    [Google Scholar]
  12. Tscherne DM, García-Sastre A. Virulence determinants of pandemic influenza viruses. J Clin Invest 2011; 121: 6– 13 [CrossRef] [PubMed]
    [Google Scholar]
  13. Dias A, Bouvier D, Crépin T, Mccarthy AA, Hart DJ et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009; 458: 914– 918 [CrossRef] [PubMed]
    [Google Scholar]
  14. Yuan P, Bartlam M, Lou Z, Chen S, Zhou J et al. Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 2009; 458: 909– 913 [CrossRef] [PubMed]
    [Google Scholar]
  15. Tefsen B, Lu G, Zhu Y, Haywood J, Zhao L et al. The N-terminal domain of PA from bat-derived influenza-like virus H17N10 has endonuclease activity. J Virol 2014; 88: 1935– 1941 [CrossRef] [PubMed]
    [Google Scholar]
  16. Zhao C, Lou Z, Guo Y, Ma M, Chen Y et al. Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center. J Virol 2009; 83: 9024– 9030 [CrossRef] [PubMed]
    [Google Scholar]
  17. Mehle A, Dugan VG, Taubenberger JK, Doudna JA. Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J Virol 2012; 86: 1750– 1757 [CrossRef] [PubMed]
    [Google Scholar]
  18. Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ et al. The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol 2009; 83: 12325– 12335 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yamayoshi S, Yamada S, Fukuyama S, Murakami S, Zhao D et al. Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses. J Virol 2014; 88: 3127– 3134 [CrossRef] [PubMed]
    [Google Scholar]
  20. Hara K, Schmidt FI, Crow M, Brownlee GG. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 2006; 80: 7789– 7798 [CrossRef] [PubMed]
    [Google Scholar]
  21. Crépin T, Dias A, Palencia A, Swale C, Cusack S et al. Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol 2010; 84: 9096– 9104 [CrossRef] [PubMed]
    [Google Scholar]
  22. Fan S, Hatta M, Kim JH, Le MQ, Neumann G et al. Amino acid changes in the influenza A virus PA protein that attenuate avian H5N1 viruses in mammals. J Virol 2014; 88: 13737– 13746 [CrossRef] [PubMed]
    [Google Scholar]
  23. Zhao H, Chu H, Zhao X, Shuai H, Wong BH et al. Novel residues in the PA protein of avian influenza H7N7 virus affect virulence in mammalian hosts. Virology 2016; 498: 1– 8 [CrossRef] [PubMed]
    [Google Scholar]
  24. Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 2006; 203: 689– 697 [CrossRef] [PubMed]
    [Google Scholar]
  25. Hu M, Chu H, Zhang K, Singh K, Li C et al. Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus. Sci Rep 2016; 6: 37800 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kowalinski E, Zubieta C, Wolkerstorfer A, Szolar OH, Ruigrok RW et al. Structural analysis of specific metal chelating inhibitor binding to the endonuclease domain of influenza pH1N1 (2009) polymerase. PLoS Pathog 2012; 8: e1002831 [CrossRef] [PubMed]
    [Google Scholar]
  27. Neumann G, Macken CA, Kawaoka Y. Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J Virol 2014; 88: 4877– 4896 [CrossRef] [PubMed]
    [Google Scholar]
  28. Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 2005; 102: 18590– 18595 [CrossRef] [PubMed]
    [Google Scholar]
  29. Resa-Infante P, Jorba N, Coloma R, Ortin J. The influenza virus RNA synthesis machine: advances in its structure and function. RNA Biol 2011; 8: 207– 215 [PubMed] [Crossref]
    [Google Scholar]
  30. Neumann G, Brownlee GG, Fodor E, Kawaoka Y. Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol 2004; 283: 121– 143 [PubMed]
    [Google Scholar]
  31. Mertens E, Dugan VG, Stockwell TB, Lindsay LL, Plancarte M et al. Evaluation of phenotypic markers in full genome sequences of avian influenza isolates from California. Comp Immunol Microbiol Infect Dis 2013; 36: 521– 536 [CrossRef] [PubMed]
    [Google Scholar]
  32. Finkelstein DB, Mukatira S, Mehta PK, Obenauer JC, Su X et al. Persistent host markers in pandemic and H5N1 influenza viruses. J Virol 2007; 81: 10292– 10299 [CrossRef] [PubMed]
    [Google Scholar]
  33. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G et al. Characterization of the 1918 influenza virus polymerase genes. Nature 2005; 437: 889– 893 [CrossRef] [PubMed]
    [Google Scholar]
  34. Song J, Xu J, Shi J, Li Y, Chen H. Synergistic effect of S224P and N383D substitutions in the PA of H5N1 avian influenza virus contributes to mammalian adaptation. Sci Rep 2015; 5: 10510 [CrossRef] [PubMed]
    [Google Scholar]
  35. Gabriel G, Abram M, Keiner B, Wagner R, Klenk HD et al. Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol 2007; 81: 9601– 9604 [CrossRef] [PubMed]
    [Google Scholar]
  36. Yamaji R, Yamada S, Le MQ, Ito M, Sakai-Tagawa Y et al. Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus. J Virol 2015; 89: 4117– 4125 [CrossRef] [PubMed]
    [Google Scholar]
  37. Jagger BW, Memoli MJ, Sheng ZM, Qi L, Hrabal RJ et al. The PB2-E627K mutation attenuates viruses containing the 2009 H1N1 influenza pandemic polymerase. MBio 2010; 1: e00067-10 [CrossRef] [PubMed]
    [Google Scholar]
  38. Mok CK, Lee HH, Lestra M, Nicholls JM, Chan MC et al. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol 2014; 88: 3568– 3576 [CrossRef] [PubMed]
    [Google Scholar]
  39. Yamayoshi S, Fukuyama S, Yamada S, Zhao D, Murakami S et al. Amino acids substitutions in the PB2 protein of H7N9 influenza A viruses are important for virulence in mammalian hosts. Sci Rep 2015; 5: 8039 [CrossRef] [PubMed]
    [Google Scholar]
  40. Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001; 293: 1840– 1842 [CrossRef] [PubMed]
    [Google Scholar]
  41. Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 2009; 5: e1000252 [CrossRef] [PubMed]
    [Google Scholar]
  42. Yuan S, Chu H, Singh K, Zhao H, Zhang K et al. A novel small-molecule inhibitor of influenza A virus acts by suppressing PA endonuclease activity of the viral polymerase. Sci Rep 2016; 6: 22880 [CrossRef] [PubMed]
    [Google Scholar]
  43. Zheng B, Chan KH, Zhang AJ, Zhou J, Chan CC et al. D225G mutation in hemagglutinin of pandemic influenza H1N1 (2009) virus enhances virulence in mice. Exp Biol Med 2010; 235: 981– 988 [CrossRef] [PubMed]
    [Google Scholar]
  44. Zheng BJ, Chan KW, Lin YP, Zhao GY, Chan C et al. Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci USA 2008; 105: 8091– 8096 [CrossRef] [PubMed]
    [Google Scholar]
  45. Meunier I, von Messling V. PB1-F2 modulates early host responses but does not affect the pathogenesis of H1N1 seasonal influenza virus. J Virol 2012; 86: 4271– 4278 [CrossRef] [PubMed]
    [Google Scholar]
  46. Kawakami E, Watanabe T, Fujii K, Goto H, Watanabe S et al. Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods 2011; 173: 1– 6 [CrossRef] [PubMed]
    [Google Scholar]
  47. Hsu JT, Yeh JY, Lin TJ, Li ML, Wu MS et al. Identification of BPR3P0128 as an inhibitor of cap-snatching activities of influenza virus. Antimicrob Agents Chemother 2012; 56: 647– 657 [CrossRef] [PubMed]
    [Google Scholar]
  48. Hu M, Yuan S, Zhang K, Singh K, Ma Q et al. PB2 substitutions V598T/I increase the virulence of H7N9 influenza A virus in mammals. Virology 2017; 501: 92– 101 [CrossRef] [PubMed]
    [Google Scholar]
  49. Yuan S, Zhang N, Singh K, Shuai H, Chu H et al. Cross-protection of influenza A virus infection by a DNA aptamer targeting the PA endonuclease domain. Antimicrob Agents Chemother 2015; 59: 4082– 4093 [CrossRef] [PubMed]
    [Google Scholar]
  50. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014; 42: W252– W258 [CrossRef] [PubMed]
    [Google Scholar]
  51. Noble E, Cox A, Deval J, Kim B. Endonuclease substrate selectivity characterized with full-length PA of influenza A virus polymerase. Virology 2012; 433: 27– 34 [CrossRef] [PubMed]
    [Google Scholar]
  52. Song MS, Kumar G, Shadrick WR, Zhou W, Jeevan T et al. Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor. Proc Natl Acad Sci USA 2016; 113: 3669– 3674 [CrossRef] [PubMed]
    [Google Scholar]
  53. Andrusier N, Nussinov R, Wolfson HJ. FireDock: fast interaction refinement in molecular docking. Proteins 2007; 69: 139– 159 [CrossRef] [PubMed]
    [Google Scholar]
  54. Pires DE, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 2014; 42: W314– W319 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000717
Loading
/content/journal/jgv/10.1099/jgv.0.000717
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error