1887

Abstract

The tumour antigens (TAgs) of mammalian polyomaviruses (PyVs) are key proteins responsible for modulating the host cell cycle and are involved in virus replication as well as cell transformation and tumour formation. Here we aimed to identify mRNA sequences of known and novel TAgs encoded by the recently discovered human polyomaviruses 9 and 12 (HPyV9 and HPyV12) in cell culture. Synthetic viral genomes were transfected into human and animal cell lines. Gene expression occurred in most cell lines, as measured by quantitative PCR of cDNA copies of mRNA encoding major structural protein VP1. Large TAg- and small TAg-encoding mRNAs were detected in all cell lines, and additional spliced mRNAs were identified encoding TAg variants of 145 aa (HPyV9) and 84 aa (HPyV12). Using as antigens in ELISA the N-terminal 78 aa common to all respective TAg variants of HPyV9 and HPyV12, seroreactivity of 100 healthy blood donors, 54 patients with malignant diseases of the gastrointestinal tract (GIT) and 32 patients with non-malignant diseases of the GIT was analysed. For comparison, the corresponding TAg N termini of BK PyV (BKPyV) and Merkel cell PyV (MCPyV) were included. Frequent reactivity against HPyV9, HPyV12 and BKPyV TAgs, but not MCPyV TAg, was observed in all tested groups. This indicates expression activity of the early region of three human PyVs in healthy and diseased subjects.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000714
2017-04-21
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/4/704.html?itemId=/content/journal/jgv/10.1099/jgv.0.000714&mimeType=html&fmt=ahah

References

  1. Calvignac-Spencer S, Feltkamp MCW, Daugherty MD, Moens U, Ramqvist T et al. A taxonomy update for the family Polyomaviridae. Arch Virol 2016; 161: 1739– 1750 [CrossRef]
    [Google Scholar]
  2. Moens U, Van Ghelue M, Johannessen M. Oncogenic potentials of the human polyomavirus regulatory proteins. Cell Mol Life Sci 2007; 64: 1656– 1678 [CrossRef] [PubMed]
    [Google Scholar]
  3. Tognon M, Corallini A, Martini F, Negrini M, Barbanti-Brodano G. Oncogenic transformation by BK virus and association with human tumors. Oncogene 2003; 22: 5192– 5200 [CrossRef] [PubMed]
    [Google Scholar]
  4. Khalili K, Del Valle L, Otte J, Weaver M, Gordon J. Human neurotropic polyomavirus, JCV, and its role in carcinogenesis. Oncogene 2003; 22: 5181– 5191 [CrossRef] [PubMed]
    [Google Scholar]
  5. Spurgeon ME, Lambert PF. Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virology 2013; 435: 118– 130 [CrossRef] [PubMed]
    [Google Scholar]
  6. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008; 319: 1096– 1100 [CrossRef] [PubMed]
    [Google Scholar]
  7. Moens U, Rasheed K, Abdulsalam I, Sveinbjørnsson B. The role of Merkel cell polyomavirus and other human polyomaviruses in emerging hallmarks of cancer. Viruses 2015; 7: 1871– 1901 [CrossRef] [PubMed]
    [Google Scholar]
  8. Dalianis T, Hirsch HH. Human polyomaviruses in disease and cancer. Virology 2013; 437: 63– 72 [CrossRef] [PubMed]
    [Google Scholar]
  9. Imperiale MJ. The human polyomaviruses, BKV and JCV: molecular pathogenesis of acute disease and potential role in cancer. Virology 2000; 267: 1– 7 [CrossRef] [PubMed]
    [Google Scholar]
  10. Maginnis MS, Atwood WJ. JC virus: an oncogenic virus in animals and humans?. Semin Cancer Biol 2009; 19: 261– 269 [CrossRef] [PubMed]
    [Google Scholar]
  11. White MK, Khalili K. Polyomaviruses and human cancer: molecular mechanisms underlying patterns of tumorigenesis. Virology 2004; 324: 1– 16 [CrossRef] [PubMed]
    [Google Scholar]
  12. Brostoff T, Dela Cruz FN Jr, Church ME, Woolard KD, Pesavento PA. The raccoon polyomavirus genome and tumor antigen transcription are stable and abundant in neuroglial tumors. J Virol 2014; 88: 12816– 12824 [CrossRef] [PubMed]
    [Google Scholar]
  13. Simmons JH, Riley LK, Franklin CL, Besch-Williford CL. Hamster polyomavirus infection in a pet Syrian hamster (Mesocricetus auratus). Vet Pathol 2001; 38: 441– 446 [CrossRef] [PubMed]
    [Google Scholar]
  14. Colegrove KM, Wellehan JF Jr, Rivera R, Moore PF, Gulland FM et al. Polyomavirus infection in a free-ranging California sea lion (Zalophus californianus) with intestinal T-cell lymphoma. J Vet Diagn Invest 2010; 22: 628– 632 [CrossRef] [PubMed]
    [Google Scholar]
  15. Stevens H, Bertelsen MF, Sijmons S, van Ranst M, Maes P. Characterization of a novel polyomavirus isolated from a fibroma on the trunk of an African elephant (Loxodonta africana). PLoS One 2013; 8: e77884 [CrossRef] [PubMed]
    [Google Scholar]
  16. Eddy BE, Stewart SE, Kirschstein RL, Young RD. Induction of subcutaneous nodules in rabbits with the SE polyoma virus. Nature 1959; 183: 766– 767 [CrossRef] [PubMed]
    [Google Scholar]
  17. Eddy BE, Stewart SE, Stanton MF, Marcotte JM. Induction of tumors in rats by tissue-culture preparations of SE polyoma virus. J Natl Cancer Inst 1959; 22: 161– 171 [PubMed]
    [Google Scholar]
  18. Graffi A, Schramm T, Bender E, Bierwolf D, Graffi I. [On a new virus containing skin tumor in golden hamster]. Arch Geschwulstforsch 1967; 30: 277– 283 (in German) [PubMed]
    [Google Scholar]
  19. Eddy BE, Borman GS, Grubbs GE, Young RD. Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology 1962; 17: 65– 75 [CrossRef] [PubMed]
    [Google Scholar]
  20. Gjoerup O, Chang Y. Update on human polyomaviruses and cancer. Adv Cancer Res 2010; 106: 1– 51 [CrossRef] [PubMed]
    [Google Scholar]
  21. Imperiale MJ, Major EO. Polyomaviruses. In Knipe DM, Howley PM. (editors) Fields Virology, 5th ed.vol. 2 Philadelphia, PA: Lippincott Williams and Wilkins; 2007; pp. 2263– 2298
    [Google Scholar]
  22. Sullivan CS, Pipas JM. T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev 2002; 66: 179– 202 [CrossRef] [PubMed]
    [Google Scholar]
  23. Ahsan N, Shah KV. Polyomaviruses: an overview. Graft 2002; 5: S9– S18 [CrossRef]
    [Google Scholar]
  24. Borchert S, Czech-Sioli M, Neumann F, Schmidt C, Wimmer P et al. High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens. J Virol 2014; 88: 3144– 3160 [CrossRef] [PubMed]
    [Google Scholar]
  25. An P, Sáenz Robles MT, Pipas JM. Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 2012; 66: 213– 236 [CrossRef] [PubMed]
    [Google Scholar]
  26. Sablina AA, Hahn WC. SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev 2008; 27: 137– 146 [CrossRef] [PubMed]
    [Google Scholar]
  27. Yu J, Boyapati A, Rundell K. Critical role for SV40 small-t antigen in human cell transformation. Virology 2001; 290: 192– 198 [CrossRef] [PubMed]
    [Google Scholar]
  28. Riley MI, Yoo W, Mda NY, Folk WR. Tiny T antigen: an autonomous polyomavirus T antigen amino-terminal domain. J Virol 1997; 71: 6068– 6074 [PubMed]
    [Google Scholar]
  29. Zerrahn J, Knippschild U, Winkler T, Deppert W. Independent expression of the transforming amino-terminal domain of SV40 large I antigen from an alternatively spliced third SV40 early mRNA. EMBO J 1993; 12: 4739– 4746 [PubMed]
    [Google Scholar]
  30. Abend JR, Joseph AE, Das D, Campbell-Cecen DB, Imperiale MJ. A truncated T antigen expressed from an alternatively spliced BK virus early mRNA. J Gen Virol 2009; 90: 1238– 1245 [CrossRef] [PubMed]
    [Google Scholar]
  31. Trowbridge PW, Frisque RJ. Identification of three new JC virus proteins generated by alternative splicing of the early viral mRNA. J Neurovirol 1995; 1: 195– 206 [CrossRef] [PubMed]
    [Google Scholar]
  32. Carter JJ, Daugherty MD, Qi X, Bheda-Malge A, Wipf GC et al. Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes. Proc Natl Acad Sci USA 2013; 110: 12744– 12749 [CrossRef] [PubMed]
    [Google Scholar]
  33. Shuda M, Feng H, Kwun HJ, Rosen ST, Gjoerup O et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci USA 2008; 105: 16272– 16277 [CrossRef] [PubMed]
    [Google Scholar]
  34. Theiss JM, Günther T, Alawi M, Neumann F, Tessmer U et al. A comprehensive analysis of replicating Merkel cell polyomavirus genomes delineates the viral transcription program and suggests a role for mcv-miR-M1 in episomal persistence. PLoS Pathog 2015; 11: e1004974 [CrossRef] [PubMed]
    [Google Scholar]
  35. Rodig SJ, Cheng J, Wardzala J, Dorosario A, Scanlon JJ et al. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest 2012; 122: 4645– 4653 [CrossRef] [PubMed]
    [Google Scholar]
  36. Schmitt M, Wieland U, Kreuter A, Pawlita M. C-terminal deletions of Merkel cell polyomavirus large T-antigen, a highly specific surrogate marker for virally induced malignancy. Int J Cancer 2012; 131: 2863– 2868 [CrossRef] [PubMed]
    [Google Scholar]
  37. Lim ES, Reyes A, Antonio M, Saha D, Ikumapayi UN et al. Discovery of STL polyomavirus, a polyomavirus of ancestral recombinant origin that encodes a unique T antigen by alternative splicing. Virology 2013; 436: 295– 303 [CrossRef] [PubMed]
    [Google Scholar]
  38. van der Meijden E, Kazem S, Dargel CA, van Vuren N, Hensbergen PJ et al. Characterization of T antigens, including middle T and alternative T, expressed by the human polyomavirus associated with trichodysplasia spinulosa. J Virol 2015; 89: 9427– 9439 [CrossRef] [PubMed]
    [Google Scholar]
  39. Gupta T, Robles MT, Schowalter RM, Buck CB, Pipas JM. Expression of the small T antigen of lymphotropic papovavirus is sufficient to transform primary mouse embryo fibroblasts. Virology 2016; 487: 112– 120 [CrossRef] [PubMed]
    [Google Scholar]
  40. Demetriou SK, Ona-Vu K, Sullivan EM, Dong TK, Hsu SW et al. Defective DNA repair and cell cycle arrest in cells expressing Merkel cell polyomavirus T antigen. Int J Cancer 2012; 131: 1818– 1827 [CrossRef] [PubMed]
    [Google Scholar]
  41. Moens U, Van Ghelue M, Song X, Ehlers B. Serological cross-reactivity between human polyomaviruses. Rev Med Virol 2013; 23: 250– 264 [CrossRef] [PubMed]
    [Google Scholar]
  42. Bodaghi S, Comoli P, Bösch R, Azzi A, Gosert R et al. Antibody responses to recombinant polyomavirus BK large T and VP1 proteins in young kidney transplant patients. J Clin Microbiol 2009; 47: 2577– 2585 [CrossRef] [PubMed]
    [Google Scholar]
  43. Leuenberger D, Andresen PA, Gosert R, Binggeli S, Ström EH et al. Human polyomavirus type 1 (BK virus) agnoprotein is abundantly expressed but immunologically ignored. Clin Vaccine Immunol 2007; 14: 959– 968 [CrossRef] [PubMed]
    [Google Scholar]
  44. Keller XE, Kardas P, Acevedo C, Sais G, Poyet C et al. Antibody response to BK polyomavirus as a prognostic biomarker and potential therapeutic target in prostate cancer. Oncotarget 2015; 6: 6459– 6469 [CrossRef] [PubMed]
    [Google Scholar]
  45. Paulson KG, Carter JJ, Johnson LG, Cahill KW, Iyer JG et al. Antibodies to Merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in Merkel cell carcinoma patients. Cancer Res 2010; 70: 8388– 8397 [CrossRef] [PubMed]
    [Google Scholar]
  46. Rekvig OP, Moens U, Sundsfjord A, Bredholt G, Osei A et al. Experimental expression in mice and spontaneous expression in human SLE of polyomavirus T-antigen. A molecular basis for induction of antibodies to DNA and eukaryotic transcription factors. J Clin Invest 1997; 99: 2045– 2054 [CrossRef] [PubMed]
    [Google Scholar]
  47. Bredholt G, Olaussen E, Moens U, Rekvig OP. Linked production of antibodies to mammalian DNA and to human polyomavirus large T antigen: footprints of a common molecular and cellular process?. Arthritis Rheum 1999; 42: 2583– 2592 [CrossRef]
    [Google Scholar]
  48. Scuda N, Hofmann J, Calvignac-Spencer S, Ruprecht K, Liman P et al. A novel human polyomavirus closely related to the African green monkey-derived lymphotropic polyomavirus. J Virol 2011; 85: 4586– 4590 [CrossRef] [PubMed]
    [Google Scholar]
  49. Korup S, Rietscher J, Calvignac-Spencer S, Trusch F, Hofmann J et al. Identification of a novel human polyomavirus in organs of the gastrointestinal tract. PLoS One 2013; 8: e58021 [CrossRef] [PubMed]
    [Google Scholar]
  50. Ehlers B, Wieland U. The novel human polyomaviruses HPyV6, 7, 9 and beyond. APMIS 2013; 121: 783– 795 [CrossRef] [PubMed]
    [Google Scholar]
  51. van der Meijden E, Wunderink HF, van der Blij-de Brouwer CS, Zaaijer HL, Rotmans JI et al. Human polyomavirus 9 infection in kidney transplant patients. Emerg Infect Dis 2014; 20: 991– 999 [CrossRef] [PubMed]
    [Google Scholar]
  52. Toptan T, Yousem SA, Ho J, Matsushima Y, Stabile LP et al. Survey for human polyomaviruses in cancer. JCI Insight 2016; 1: e85562 [CrossRef] [PubMed]
    [Google Scholar]
  53. Brade L, Vogl W, Gissman L, Hausen HZ. Propagation of B-lymphotropic papovavirus (LPV) in human B-lymphoma cells and characterization of its DNA. Virology 1981; 114: 228– 235 [CrossRef] [PubMed]
    [Google Scholar]
  54. Moens U, Van Ghelue M, Ludvigsen M, Korup-Schulz S, Ehlers B. Early and late promoters of BK polyomavirus, Merkel cell polyomavirus, trichodysplasia spinulosa-associated polyomavirus and human polyomavirus 12 are among the strongest of all known human polyomaviruses in 10 different cell lines. J Gen Virol 2015; 96: 2293– 2303 [CrossRef] [PubMed]
    [Google Scholar]
  55. Neumann F, Borchert S, Schmidt C, Reimer R, Hohenberg H et al. Replication, gene expression and particle production by a consensus Merkel cell polyomavirus (MCPyV) genome. PLoS One 2011; 6: e29112 [CrossRef] [PubMed]
    [Google Scholar]
  56. Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M et al. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucl Acids Res 2009; 37: e67 [CrossRef] [PubMed]
    [Google Scholar]
  57. Patel AA, Steitz JA. Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol 2003; 4: 960– 970 [Crossref]
    [Google Scholar]
  58. Trusch F, Klein M, Finsterbusch T, Kühn J, Hofmann J et al. Seroprevalence of human polyomavirus 9 and cross-reactivity to African green monkey-derived lymphotropic polyomavirus. J Gen Virol 2012; 93: 698– 705 [CrossRef] [PubMed]
    [Google Scholar]
  59. Calvignac-Spencer S, Feltkamp MC, Daugherty MD, Moens U, Ramqvist T et al. A taxonomy update for the family Polyomaviridae. Arch Virol 2016; 161: 1739– 1750 [CrossRef] [PubMed]
    [Google Scholar]
  60. Lednicky JA, Butel JS, Luetke MC, Loeb JC. Complete genomic sequence of a new human polyomavirus 9 strain with an altered noncoding control region. Virus Genes 2014; 49: 490– 492 [CrossRef] [PubMed]
    [Google Scholar]
  61. Andreassen K, Moens U, Nossent H, Marion TN, Rekvig OP. Termination of human T cell tolerance to histones by presentation of histones and polyomavirus T antigen provided that T antigen is complexed with nucleosomes. Arthritis Rheum 1999; 42: 2449– 2460 [CrossRef] [PubMed]
    [Google Scholar]
  62. Rekvig OP, Bendiksen S, Moens U. Immunity and autoimmunity induced by polyomaviruses. In: Polyomaviruses and Human Diseases Springer; 2006; pp. 117– 147 [Crossref]
    [Google Scholar]
  63. Bredholt G, Olaussen E, Moens U, Rekvig O. Linked production of antibodies to mammalian DNA and to human polyomavirus large T antigen. Arthritis Rheum 1999; 42: 2583– 2592 [Crossref]
    [Google Scholar]
  64. Schowalter RM, Pastrana DV, Buck CB. Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog 2011; 7: e1002161 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000714
Loading
/content/journal/jgv/10.1099/jgv.0.000714
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error