Zinc-binding site of human immunodeficiency virus 2 Vpx prevents instability and dysfunction of the protein Free

Abstract

Human immunodeficiency virus 2 Vpx coordinates zinc through residues H, H, C and C. We reported previously that H, H and C mutants maintain Vpx activity to facilitate the degradation of SAMHD1. Herein, the expression of Vpx mutants in cells was examined in detail. We demonstrated that the zinc-binding site stabilizes the protein to keep its function in virus growth when low levels of Vpx are expressed. At higher levels of expression, Vpx aggregation could occur, and zinc binding would suppress such aggregation. Among the amino acids involved in zinc coordination, H plays the most critical role. In summary, zinc binding appears to mitigate flexibility of the three-helix fold of Vpx, thereby preventing dysfunction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000701
2017-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/2/275.html?itemId=/content/journal/jgv/10.1099/jgv.0.000701&mimeType=html&fmt=ahah

References

  1. Vandewoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728–762 [View Article][PubMed]
    [Google Scholar]
  2. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011; 1:a006841 [View Article][PubMed]
    [Google Scholar]
  3. Zhang C, de Silva S, Wang JH, Wu L. Co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the vpx gene in HIV-1 ancestor. PLoS One 2012; 7:e37477 [View Article][PubMed]
    [Google Scholar]
  4. Etienne L, Hahn BH, Sharp PM, Matsen FA, Emerman M. Gene loss and adaptation to hominids underlie the ancient origin of HIV-1. Cell Host Microbe 2013; 14:85–92 [View Article][PubMed]
    [Google Scholar]
  5. Fregoso OI, Ahn J, Wang C, Mehrens J, Skowronski J et al. Evolutionary toggling of Vpx/Vpr specificity results in divergent recognition of the restriction factor SAMHD1. PLoS Pathog 2013; 9:e1003496 [View Article][PubMed]
    [Google Scholar]
  6. Lim ES, Fregoso OI, McCoy CO, Matsen FA, Malik HS et al. The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 2012; 11:194–204 [View Article][PubMed]
    [Google Scholar]
  7. Fujita M, Otsuka M, Nomaguchi M, Adachi A. Multifaceted activity of HIV Vpr/Vpx proteins: the current view of their virological functions. Rev Med Virol 2010; 20:68–76 [View Article][PubMed]
    [Google Scholar]
  8. Ayinde D, Maudet C, Transy C, Margottin-Goguet F. Limelight on two HIV/SIV accessory proteins in macrophage infection: is Vpx overshadowing Vpr?. Retrovirology 2010; 7:35 [View Article][PubMed]
    [Google Scholar]
  9. Khamsri B, Murao F, Yoshida A, Sakurai A, Uchiyama T et al. Comparative study on the structure and cytopathogenic activity of HIV Vpr/Vpx proteins. Microbes Infect 2006; 8:10–15 [View Article][PubMed]
    [Google Scholar]
  10. Tokunaga K, Ishimoto A, Ikuta K, Adachi A. Growth ability of auxiliary gene mutants of human immunodeficiency virus types 1 and 2 in unstimulated peripheral blood mononuclear cells. Arch Virol 1997; 142:177–181 [View Article][PubMed]
    [Google Scholar]
  11. Chauveau L, Puigdomenech I, Ayinde D, Roesch F, Porrot F et al. HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells. Retrovirology 2015; 12:2 [View Article][PubMed]
    [Google Scholar]
  12. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474:654–657 [View Article][PubMed]
    [Google Scholar]
  13. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011; 474:658–661 [View Article][PubMed]
    [Google Scholar]
  14. Ciftci HI, Fujino H, Koga R, Yamamoto M, Kawamura S et al. Mutational analysis of HIV-2 Vpx shows that proline residue 109 in the poly-proline motif regulates degradation of SAMHD1. FEBS Lett 2015; 589:1505–1514 [View Article][PubMed]
    [Google Scholar]
  15. Berger G, Turpin J, Cordeil S, Tartour K, Nguyen XN et al. Functional analysis of the relationship between Vpx and the restriction factor SAMHD1. J Biol Chem 2012; 287:41210–41217 [View Article][PubMed]
    [Google Scholar]
  16. Nomaguchi M, Doi N, Adachi A. Virological characterization of HIV-2 vpx gene mutants in various cell systems. Microbes Infect 2014; 16:695–701 [View Article][PubMed]
    [Google Scholar]
  17. Fujita M, Nomaguchi M, Adachi A, Otsuka M. SAMHD1-dependent and -independent functions of HIV-2/SIV Vpx protein. Front Microbiol 2012; 3:297 [View Article][PubMed]
    [Google Scholar]
  18. Bergamaschi A, Ayinde D, David A, Le Rouzic E, Morel M et al. The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol 2009; 83:4854–4860 [View Article][PubMed]
    [Google Scholar]
  19. Schwefel D, Groom HC, Boucherit VC, Christodoulou E, Walker PA et al. Structural basis of lentiviral subversion of a cellular protein degradation pathway. Nature 2014; 505:234–238 [View Article][PubMed]
    [Google Scholar]
  20. Kawamura M, Sakai H, Adachi A. Human immunodeficiency virus Vpx is required for the early phase of replication in peripheral blood mononuclear cells. Microbiol Immunol 1994; 38:871–878 [View Article][PubMed]
    [Google Scholar]
  21. Accola MA, Bukovsky AA, Jones MS, Göttlinger HG. A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 1999; 73:9992–9999[PubMed]
    [Google Scholar]
  22. Wen X, Casey Klockow L, Nekorchuk M, Sharifi HJ, de Noronha CM. The HIV1 protein Vpr acts to enhance constitutive DCAF1-dependent UNG2 turnover. PLoS One 2012; 7:e30939 [View Article][PubMed]
    [Google Scholar]
  23. Fujita M, Otsuka M, Miyoshi M, Khamsri B, Nomaguchi M et al. Vpx is critical for reverse transcription of the human immunodeficiency virus type 2 genome in macrophages. J Virol 2008; 82:7752–7756 [View Article][PubMed]
    [Google Scholar]
  24. Fujita M, Akari H, Sakurai A, Yoshida A, Chiba T et al. Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation. Microbes Infect 2004; 6:791–798 [View Article][PubMed]
    [Google Scholar]
  25. Hiramatsu N, Kasai A, Yao J, Meng Y, Takeda M et al. AP-1-independent sensitization to oxidative stress-induced apoptosis by proteasome inhibitors. Biochem Biophys Res Commun 2004; 316:545–552 [View Article][PubMed]
    [Google Scholar]
  26. Ishikawa Y, Kitamura M. Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int 2000; 58:1078–1087 [View Article][PubMed]
    [Google Scholar]
  27. Moreno-Manzano V, Ishikawa Y, Lucio-Cazana J, Kitamura M. Suppression of apoptosis by all-trans-retinoic acid. Dual intervention in the c-Jun N-terminal kinase-AP-1 pathway. J Biol Chem 1999; 274:20251–20258 [View Article][PubMed]
    [Google Scholar]
  28. Gorelick RJ, Chabot DJ, Rein A, Henderson LE, Arthur LO. The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid protein are not functionally equivalent. J Virol 1993; 67:4027–4036[PubMed]
    [Google Scholar]
  29. Dannull J, Surovoy A, Jung G, Moelling K. Specific binding of HIV-1 nucleocapsid protein to PSI RNA in vitro requires N-terminal zinc finger and flanking basic amino acid residues. EMBO J 1994; 13:1525–1533[PubMed]
    [Google Scholar]
  30. Nakamura T, Masuda T, Goto T, Sano K, Nakai M et al. Lack of infectivity of HIV-1 integrase zinc finger-like domain mutant with morphologically normal maturation. Biochem Biophys Res Commun 1997; 239:715–722 [View Article][PubMed]
    [Google Scholar]
  31. Zheng R, Jenkins TM, Craigie R. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci USA 1996; 93:13659–13664 [View Article][PubMed]
    [Google Scholar]
  32. Xiao Z, Xiong Y, Zhang W, Tan L, Ehrlich E et al. Characterization of a novel Cullin5 binding domain in HIV-1 Vif. J Mol Biol 2007; 373:541–550 [View Article][PubMed]
    [Google Scholar]
  33. Mehle A, Thomas ER, Rajendran KS, Gabuzda D. A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 2006; 281:17259–17265 [View Article][PubMed]
    [Google Scholar]
  34. Tompa P, Prilusky J, Silman I, Sussman JL. Structural disorder serves as a weak signal for intracellular protein degradation. Proteins 2008; 71:903–909 [View Article][PubMed]
    [Google Scholar]
  35. van der Lee R, Lang B, Kruse K, Gsponer J, Sánchez de Groot N et al. Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell Rep 2014; 8:1832–1844 [View Article][PubMed]
    [Google Scholar]
  36. de Simone A, Kitchen C, Kwan AH, Sunde M, Dobson CM et al. Intrinsic disorder modulates protein self-assembly and aggregation. Proc Natl Acad Sci USA 2012; 109:6951–6956 [View Article][PubMed]
    [Google Scholar]
  37. Lebendiker M, Danieli T. Production of prone-to-aggregate proteins. FEBS Lett 2014; 588:236–246 [View Article][PubMed]
    [Google Scholar]
  38. Miyake A, Fujita M, Fujino H, Koga R, Kawamura S et al. Poly-proline motif in HIV-2 Vpx is critical for its efficient translation. J Gen Virol 2014; 95:179–189 [View Article][PubMed]
    [Google Scholar]
  39. Khamsri B, Fujita M, Kamada K, Piroozmand A, Yamashita T et al. Effects of lysine to arginine mutations in HIV-1 Vif on its expression and viral infectivity. Int J Mol Med 2006; 18:679–683 [View Article][PubMed]
    [Google Scholar]
  40. Yee JK, Miyanohara A, Laporte P, Bouic K, Burns JC et al. A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA 1994; 91:9564–9568 [View Article][PubMed]
    [Google Scholar]
  41. Kanemaru Y, Momiki Y, Matsuura S, Horikawa T, Gohda J et al. An artificial copper complex incorporating a cell-penetrating peptide inhibits nuclear factor-κB (NF-κB) activation. Chem Pharm Bull 2011; 59:1555–1558 [View Article][PubMed]
    [Google Scholar]
  42. Lebkowski JS, Clancy S, Calos MP. Simian virus 40 replication in adenovirus-transformed human cells antagonizes gene expression. Nature 1985; 317:169–171 [View Article][PubMed]
    [Google Scholar]
  43. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T et al. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26:171–176 [View Article][PubMed]
    [Google Scholar]
  44. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 1953; 97:695–710 [View Article][PubMed]
    [Google Scholar]
  45. Kappes JC, Parkin JS, Conway JA, Kim J, Brouillette CG et al. Intracellular transport and virion incorporation of vpx requires interaction with other virus type-specific components. Virology 1993; 193:222–233 [View Article][PubMed]
    [Google Scholar]
  46. Hasegawa A, Tsujimoto H, Maki N, Ishikawa K, Miura T et al. Genomic divergence of HIV-2 from Ghana. AIDS Res Hum Retroviruses 1989; 5:593–604 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000701
Loading
/content/journal/jgv/10.1099/jgv.0.000701
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed