1887

Abstract

A novel avian alphaherpesvirus, preliminarily designated sphenicid alphaherpesvirus 1 (SpAHV-1), has been independently isolated from juvenile Humboldt and African penguins (Spheniscus humboldti and Spheniscus demersus) kept in German zoos suffering from diphtheroid oropharyngitis/laryngotracheitis and necrotizing enteritis (collectively designated as penguin-diphtheria-like disease). High-throughput sequencing was used to determine the complete genome sequences of the first two SpAHV-1 isolates. SpAHV-1 comprises a class D genome with a length of about 164 kbp, a G+C content of 45.6 mol% and encodes 86 predicted ORFs. Taxonomic association of SpAHV-1 to the genus Mardivirus was supported by gene content clustering and phylogenetic analysis of herpesvirus core genes. The presented results imply that SpAHV-1 could be the primary causative agent of penguin-diphtheria-like fatal diseases in banded penguins. These results may serve as a basis for the development of diagnostic tools in order to investigate similar cases of penguin diphtheria in wild and captive penguins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000698
2017-02-20
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/1/89.html?itemId=/content/journal/jgv/10.1099/jgv.0.000698&mimeType=html&fmt=ahah

References

  1. Alley MR, Morgan KJ, Gill JM, Hocken AG. Diseases and causes of mortality in yellow-eyed penguins, Megadyptes antipodes. Kokako 2004;11:18–23
    [Google Scholar]
  2. Alley MR, Gartrell BD, Morgan KJ. Severe outbreak of diphtheritic stomatitis in yellow-eyed penguins, Megadyptes antipodes. Kokako 2005;12:16
    [Google Scholar]
  3. Alley MR, Hill AG. Disease investigation in yellow-eyed penguin, Megadyptes antipodes, chicks. Kokako 2007;14:15
    [Google Scholar]
  4. Denk D, Stidworthy MF. A retrospective review of disease in captive penguins. Proceedings of the Joint European Congress of the ECVP and ESVP Bologna, Italy, September 2016 2016;p. 70
    [Google Scholar]
  5. Alley MR, Suepaul RB, Mckinlay B, Young MJ, Wang J et al. Diphtheritic stomatitis in yellow-eyed penguins (Megadyptes antipodes) in New Zealand. J Wildl Dis 2017;53:102–110 [CrossRef][PubMed]
    [Google Scholar]
  6. Ehlers B, Borchers K, Grund C, Frölich K, Ludwig H et al. Detection of new DNA polymerase genes of known and potentially novel herpesviruses by PCR with degenerate and deoxyinosine-substituted primers. Virus Genes 1999;18:211–220[PubMed][CrossRef]
    [Google Scholar]
  7. Höper D, Freuling CM, Müller T, Hanke D, von Messling V et al. High definition viral vaccine strain identity and stability testing using full-genome population data the next generation of vaccine quality control. Vaccine 2015;33:5829–5837 [CrossRef][PubMed]
    [Google Scholar]
  8. Scheuch M, Höper D, Beer M. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinformatics 2015;16:69 [CrossRef][PubMed]
    [Google Scholar]
  9. Juozapaitis M, Aguiar Moreira É, Mena I, Giese S, Riegger D et al. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus. Nat Commun 2014;5:4448 [CrossRef][PubMed]
    [Google Scholar]
  10. Kincaid AL, Bunton TE, Cranfield M. Herpesvirus-like infection in black-footed penguins (Spheniscus demersus). J Wildl Dis 1988;24:173–175 [CrossRef][PubMed]
    [Google Scholar]
  11. Parsons NJ, Gous TA, van Wilpe E, Strauss V, Vanstreels RE. Herpesvirus-like respiratory infection in African penguins Spheniscus demersus admitted to a rehabilitation centre. Dis Aquat Organ 2015;116:149–155 [CrossRef][PubMed]
    [Google Scholar]
  12. Roizman B, Baines J. The diversity and unity of herpesviridae. Comp Immunol Microbiol Infect Dis 1991;14:63–79 [CrossRef][PubMed]
    [Google Scholar]
  13. International Committee on Taxonomy of Viruses (ICTV) Virus Taxonomy: 2015 Release EC 47. London, UK, July 2015, Email ratification 2016 (MSL #30) [online]. Available athttp://ictvonline.org/virusTaxonomy.asp accessed 23 November 2016
  14. Davison AJ. Introduction: definition and classification of the human herpesviruses. In Arvin A, Campidelli-Fiume G, Mocarski E, Moore PS, Roizman B. et al (editors) Human Herpesviruses: Biology, Therapy and Immunoprophylaxis Cambridge: Cambridge University Press; 2007; pp.10–26[CrossRef]
    [Google Scholar]
  15. Koff A, Tegtmeyer P. Characterization of major recognition sequences for a herpes simplex virus type 1 origin-binding protein. J Virol 1988;62:4096–4103[PubMed]
    [Google Scholar]
  16. Deiss LP, Frenkel N. Herpes simplex virus amplicon: cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. J Virol 1986;57:933–941[PubMed]
    [Google Scholar]
  17. Mcvoy MA, Nixon DE, Adler SP, Mocarski ES. Sequences within the herpesvirus-conserved pac1 and pac2 motifs are required for cleavage and packaging of the murine cytomegalovirus genome. J Virol 1998;72:48–56[PubMed]
    [Google Scholar]
  18. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet 2000;16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef][PubMed]
    [Google Scholar]
  20. Davison AJ. Herpesvirus systematics. Vet Microbiol 2010;143:52–69 [CrossRef][PubMed]
    [Google Scholar]
  21. Thureen DR, Keeler CL Jr. Psittacid herpesvirus 1 and infectious laryngotracheitis virus: comparative genome sequence analysis of two avian alphaherpesviruses. J Virol 2006;80:7863–7872 [CrossRef][PubMed]
    [Google Scholar]
  22. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–580 [CrossRef][PubMed]
    [Google Scholar]
  23. Schwyzer M, Fischer-Bracher C, Fraefel C, Bächi T, Nuñez R et al. Transduction of Vero cells and bovine monocytes with a herpes simplex virus-1 based amplicon carrying the gene for the bovine herpesvirus-1 Circ protein. Vet Microbiol 2002;86:165–174 [CrossRef][PubMed]
    [Google Scholar]
  24. Ziemann K, Mettenleiter TC, Fuchs W. Infectious laryngotracheitis herpesvirus expresses a related pair of unique nuclear proteins which are encoded by split genes located at the right end of the UL genome region. J Virol 1998;72:6867–6874[PubMed]
    [Google Scholar]
  25. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 2015;43:D213–D221 [CrossRef][PubMed]
    [Google Scholar]
  26. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–858 [CrossRef][PubMed]
    [Google Scholar]
  27. Montague MG, Hutchison CA 3rd. Gene content phylogeny of herpesviruses. Proc Natl Acad Sci USA 2000;97:5334–5339 [CrossRef][PubMed]
    [Google Scholar]
  28. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997;278:631–637[PubMed][CrossRef]
    [Google Scholar]
  29. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W et al. Gplots 3.0.1: Various R programming tools for plotting data. 2016;https://cran.r-project.org/web/packages/gplots/index.html
  30. Dray S, Dufour A, Thioulouse J, Jombart T, Pavoine S et al. ade4 (1.7-4): Analysis of ecological data: Exploratory and euclidean methods in environmental sciences. 2016;https://cran.r-project.org/web/packages/ade4/index.html
  31. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–274 [CrossRef][PubMed]
    [Google Scholar]
  32. Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013;30:1188–1195 [CrossRef][PubMed]
    [Google Scholar]
  33. Baker AJ, Pereira SL, Haddrath OP, Edge KA. Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc Biol Sci 2006;273:11–17 [CrossRef][PubMed]
    [Google Scholar]
  34. Mcgeoch DJ, Rixon FJ, Davison AJ. Topics in herpesvirus genomics and evolution. Virus Res 2006;117:90–104 [CrossRef][PubMed]
    [Google Scholar]
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  36. Mcgeoch DJ, Cook S. Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale. J Mol Biol 1994;238:9–22 [CrossRef][PubMed]
    [Google Scholar]
  37. Mcgeoch DJ, Cook S, Dolan A, Jamieson FE, Telford EA. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol 1995;247:443–458 [CrossRef][PubMed]
    [Google Scholar]
  38. Mcgeoch DJ, Dolan A, Ralph AC. Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 2000;74:10401–10406[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000698
Loading
/content/journal/jgv/10.1099/jgv.0.000698
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error