Mutagen resistance and mutation restriction of St. Louis encephalitis virus Free

Abstract

The error rate of the RNA-dependent RNA polymerase (RdRp) of RNA viruses is important in maintaining genetic diversity for viral adaptation and fitness. Numerous studies have shown that mutagen-resistant RNA virus variants display amino acid mutations in the RdRp and other replicase subunits, which in turn exhibit an altered fidelity phenotype affecting viral fitness, adaptability and pathogenicity. St. Louis encephalitis virus (SLEV), like its close relative West Nile virus, is a mosquito-borne flavivirus that has the ability to cause neuroinvasive disease in humans. Here, we describe the successful generation of multiple ribavirin-resistant populations containing a shared amino acid mutation in the SLEV RdRp (E416K). These E416K mutants also displayed resistance to the antiviral T-1106, an RNA mutagen similar to ribavirin. Structural modelling of the E416K polymerase mutation indicated its location in the pinky finger domain of the RdRp, distant from the active site. Deep sequencing of the E416K mutant revealed lower genetic diversity than wild-type SLEV after growth in both vertebrate and invertebrate cells. Phenotypic characterization showed that E416K mutants displayed similar or increased replication in mammalian cells, as well as modest attenuation in mosquito cells, consistent with previous work with West Nile virus high-fidelity variants. In addition, attenuation was limited to mosquito cells with a functional RNA interference response, suggesting an impaired capacity to escape RNA interference could contribute to attenuation of high-fidelity variants. Our results provide increased evidence that RNA mutagen resistance arises through modulation of the RdRp and give further insight into the consequences of altered fidelity of flaviviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000682
2017-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/2/201.html?itemId=/content/journal/jgv/10.1099/jgv.0.000682&mimeType=html&fmt=ahah

References

  1. Monath TP. Epidemiology. In: Monath TP. (editor) St. Louis Encephalitis Washington, DC: American Public Health Association; 1980 pp. 239–312
    [Google Scholar]
  2. Reisen WK. Epidemiology of St. Louis encephalitis virus. Adv Virus Res 2003; 61:139–183[PubMed] [CrossRef]
    [Google Scholar]
  3. Tan CS, Hobson-Peters JM, Stoermer MJ, Fairlie DP, Khromykh AA et al. An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. J Gen Virol 2013; 94:1961–1971 [View Article][PubMed]
    [Google Scholar]
  4. Zhang B, Dong H, Zhou Y, Shi PY. Genetic interactions among the West Nile virus methyltransferase, the RNA-dependent RNA polymerase, and the 5′ stem–loop of genomic RNA. J Virol 2008; 82:7047–7058 [View Article][PubMed]
    [Google Scholar]
  5. Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci USA 1999; 96:13910–13913 [CrossRef]
    [Google Scholar]
  6. Ciota AT, Jia Y, Payne AF, Jerzak G, Davis LJ et al. Experimental passage of St. Louis encephalitis virus in vivo in mosquitoes and chickens reveals evolutionarily significant virus characteristics. PLoS One 2009; 4:e7876 [CrossRef]
    [Google Scholar]
  7. Ciota AT, Ehrbar DJ, Van Slyke GA, Willsey GG, Kramer LD. Cooperative interactions in the West Nile virus mutant swarm. BMC Evol Biol 2012; 12:58 [View Article]
    [Google Scholar]
  8. Ciota AT, Lovelace AO, Jones SA, Payne A, Kramer LD. Adaptation of two flaviviruses results in differences in genetic heterogeneity and virus adaptability. J Gen Virol 2007; 88:2398–2406 [View Article][PubMed]
    [Google Scholar]
  9. Ciota AT, Ngo KA, Lovelace AO, Payne AF, Zhou Y et al. Role of the mutant spectrum in adaptation and replication of West Nile virus. J Gen Virol 2007; 88:865–874 [View Article][PubMed]
    [Google Scholar]
  10. Ebel GD, Fitzpatrick KA, Lim PY, Bennett CJ, Deardorff ER et al. Nonconsensus West Nile virus genomes arising during mosquito infection suppress pathogenesis and modulate virus fitness in vivo. J Virol 2011; 85:12605–12613 [View Article][PubMed]
    [Google Scholar]
  11. Fan X, Mao Q, Zhou D, Lu Y, Xing J et al. High diversity of hepatitis C viral quasispecies is associated with early virological response in patients undergoing antiviral therapy. Hepatology 2009; 50:1765–1772 [View Article][PubMed]
    [Google Scholar]
  12. Fitzpatrick KA, Deardorff ER, Pesko K, Brackney DE, Zhang B et al. Population variation of West Nile virus confers a host-specific fitness benefit in mosquitoes. Virology 2010; 404:89–95 [View Article][PubMed]
    [Google Scholar]
  13. Jerzak GV, Bernard K, Kramer LD, Shi PY, Ebel GD. The West Nile virus mutant spectrum is host-dependant and a determinant of mortality in mice. Virology 2007; 360:469–476 [View Article][PubMed]
    [Google Scholar]
  14. Veillon P, Payan C, Gaudy C, Goudeau A, Lunel F. Mutation analysis of ISDR and V3 domains of hepatitis C virus NS5A region before interferon therapy with or without ribavirin. Pathol Biol 2004; 52:505–510 [View Article][PubMed]
    [Google Scholar]
  15. Crotty S, Maag D, Arnold JJ, Zhong W, Lau JY et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 2000; 6:1375–1379 [View Article][PubMed]
    [Google Scholar]
  16. Crotty S, Cameron CE, Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA 2001; 98:6895–6900 [View Article][PubMed]
    [Google Scholar]
  17. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 2006; 439:344–348 [View Article][PubMed]
    [Google Scholar]
  18. Beaucourt S, Bordería AV, Coffey LL, Gnädig NF, Sanz-Ramos M et al. Isolation of fidelity variants of RNA viruses and characterization of virus mutation frequency. J Vis Exp 2011 [View Article][PubMed]
    [Google Scholar]
  19. Coffey LL, Beeharry Y, Borderia AV, Blanc H, Vignuzzi M. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci USA 2011; 108:16038–16043 [CrossRef]
    [Google Scholar]
  20. Pfeiffer JK, Kirkegaard K. A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 2003; 100:7289–7294 [View Article][PubMed]
    [Google Scholar]
  21. Sierra M, Airaksinen A, González-López C, Agudo R, Arias A et al. Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe. J Virol 2007; 81:2012–2024 [View Article][PubMed]
    [Google Scholar]
  22. Van Slyke GA, Arnold JJ, Lugo AJ, Griesemer SB, Moustafa IM et al. Sequence-specific fidelity alterations associated with West Nile virus attenuation in mosquitoes. PLoS Pathog 2015; 11:e1005009 [View Article][PubMed]
    [Google Scholar]
  23. Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR et al. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 2012; 18:1820–1826 [View Article][PubMed]
    [Google Scholar]
  24. Pfeiffer JK, Kirkegaard K. Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Path 2005; 1:e11 [View Article]
    [Google Scholar]
  25. Sadeghipour S, McMinn PC. A study of the virulence in mice of high copying fidelity variants of human enterovirus 71. Virus Res 2013; 176:265–272 [View Article][PubMed]
    [Google Scholar]
  26. Ciota AT, Koch EM, Willsey GG, Davis LJ, Jerzak GV et al. Temporal and spatial alterations in mutant swarm size of St. Louis encephalitis virus in mosquito hosts. Infect Genet Evol 2011; 11:460–468 [View Article][PubMed]
    [Google Scholar]
  27. Ciota AT, Lovelace AO, Ngo KA, Le AN, Maffei JG et al. Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology 2007; 357:165–174 [View Article][PubMed]
    [Google Scholar]
  28. Shah NR, Sunderland A, Grdzelishvili VZ. Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin. PLoS One 2010; 5:e11265 [View Article][PubMed]
    [Google Scholar]
  29. Zeng J, Wang H, Xie X, Yang D, Zhou G et al. An increased replication fidelity mutant of foot-and-mouth disease virus retains fitness in vitro and virulence in vivo. Antiviral Res 2013; 100:1–7 [View Article][PubMed]
    [Google Scholar]
  30. Benarroch D, Egloff MP, Mulard L, Guerreiro C, Romette JL et al. A structural basis for the inhibition of the NS5 dengue virus mRNA 2′-O-methyltransferase domain by ribavirin 5′-triphosphate. J Biol Chem 2004; 279:35638–35643 [View Article][PubMed]
    [Google Scholar]
  31. Cassidy LF, Patterson JL. Mechanism of La Crosse virus inhibition by ribavirin. Antimicrob Agents Chemother 1989; 33:2009–2011 [View Article][PubMed]
    [Google Scholar]
  32. Goswami BB, Borek E, Sharma OK, Fujitaki J, Smith RA. The broad spectrum antiviral agent ribavirin inhibits capping of mRNA. Biochem Biophys Res Commun 1979; 89:830–836 [View Article][PubMed]
    [Google Scholar]
  33. Leyssen P, De Clercq E, Neyts J. The anti-yellow fever virus activity of ribavirin is independent of error-prone replication. Mol Pharmacol 2006; 69:1461–1467 [View Article][PubMed]
    [Google Scholar]
  34. Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smee DF et al. T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res 2009; 82:95–102 [View Article][PubMed]
    [Google Scholar]
  35. Lu G, Gong P. Crystal structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 2013; 9:e1003549 [View Article][PubMed]
    [Google Scholar]
  36. Mosley RT, Edwards TE, Murakami E, Lam AM, Grice RL et al. Structure of hepatitis C virus polymerase in complex with primer–template RNA. J Virol 2012; 86:6503–6511 [View Article][PubMed]
    [Google Scholar]
  37. Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA et al. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 2010; 4:e856 [View Article][PubMed]
    [Google Scholar]
  38. Rozen-Gagnon K, Stapleford KA, Mongelli V, Blanc H, Failloux AB et al. Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog 2014; 10:e1003877 [CrossRef]
    [Google Scholar]
  39. Vignuzzi M, Stone JK, Andino R. Ribavirin and lethal mutagenesis of poliovirus: molecular mechanisms, resistance and biological implications. Virus Res 2005; 107:173–181 [View Article][PubMed]
    [Google Scholar]
  40. Vignuzzi M, Wendt E, Andino R. Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 2008; 14:154–161 [View Article][PubMed]
    [Google Scholar]
  41. Zeng J, Wang H, Xie X, Li C, Zhou G et al. Ribavirin-resistant variants of foot-and-mouth disease virus: the effect of restricted quasispecies diversity on viral virulence. J Virol 2014; 88:4008–4020 [View Article][PubMed]
    [Google Scholar]
  42. Graci JD, Cameron CE. Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol 2006; 16:37–48 [View Article][PubMed]
    [Google Scholar]
  43. Arnold JJ, Vignuzzi M, Stone JK, Andino R, Cameron CE. Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J Biol Chem 2005; 280:25706–25716 [View Article][PubMed]
    [Google Scholar]
  44. Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S et al. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother 2005; 49:981–986 [View Article][PubMed]
    [Google Scholar]
  45. Kiso M, Takahashi K, Sakai-Tagawa Y, Shinya K, Sakabe S et al. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci USA 2010; 107:882–887 [View Article][PubMed]
    [Google Scholar]
  46. Baranovich T, Wong SS, Armstrong J, Marjuki H, Webby RJ et al. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 2013; 87:3741–3751 [View Article][PubMed]
    [Google Scholar]
  47. Brackney DE, Beane JE, Ebel GD. RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 2009; 5:e1000502 [View Article]
    [Google Scholar]
  48. Jerzak G, Bernard KA, Kramer LD, Ebel GD. Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J Gen Virol 2005; 86:2175–2183 [View Article][PubMed]
    [Google Scholar]
  49. Ciota AT, Payne AF, Ngo KA, Kramer LD. Consequences of in vitro host shift for St. Louis encephalitis virus. J Gen Virol 2014; 95:1281–1288 [View Article][PubMed]
    [Google Scholar]
  50. Gnadig NF, Beaucourt S, Campagnola G, Borderia AV, Sanz-Ramos M et al. Coxsackievirus B3 mutator strains are attenuated in vivo. Proc Natl Acad Sci USA 2012; 109:E2294E2303 [CrossRef]
    [Google Scholar]
  51. Greene IP, Wang E, Deardorff ER, Milleron R, Domingo E et al. Effect of alternating passage on adaptation of Sindbis virus to vertebrate and invertebrate cells. J Virol 2005; 79:14253–14260 [View Article][PubMed]
    [Google Scholar]
  52. Weaver SC, Brault AC, Kang W, Holland JJ. Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J Virol 1999; 73:4316–4326[PubMed]
    [Google Scholar]
  53. Brackney DE, Schirtzinger EE, Harrison TD, Ebel GD, Hanley KA. Modulation of flavivirus population diversity by RNA interference. J Virol 2015; 89:4035–4039 [View Article][PubMed]
    [Google Scholar]
  54. Maharaj PD, Anishchenko M, Langevin SA, Fang Y, Reisen WK et al. Structural gene (prME) chimeras of St Louis encephalitis virus and West Nile virus exhibit altered in vitro cytopathic and growth phenotypes. J Gen Virol 2012; 93:39–49 [View Article][PubMed]
    [Google Scholar]
  55. Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD. Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods 2006; 134:183–189 [View Article][PubMed]
    [Google Scholar]
  56. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  57. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article][PubMed]
    [Google Scholar]
  58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000682
Loading
/content/journal/jgv/10.1099/jgv.0.000682
Loading

Data & Media loading...

Most cited Most Cited RSS feed