Hepatitis C virus core activates proteasomal activator 28γ expression via upregulation of p53 levels to control virus propagation Free

Abstract

The proteasomal activator 28γ (PA28), frequently overexpressed in hepatocellular carcinoma, is believed to play several important roles in hepatitis C virus (HCV) replication and viral pathogenesis. However, the underlying mechanism for PA28γ overexpression in hepatocellular carcinoma and its role during HCV replication are still unclear. In the present study, we found that HCV core derived from either ectopic expression or HCV infection upregulates PA28γ levels in p53-positive human hepatocytes. For this effect, HCV core sequentially activated ataxia telangiectasia mutated and checkpoint kinase 2 via phosphorylation at Ser-1981 and Thr-68 residues, respectively, resulting in stabilization of p53 via phosphorylation at Ser-15 and Ser-20 residues and subsequent transcriptional activation of PA28γ expression. The elevated PA28γ in turn downregulated HCV core levels by either inducing its ubiquitination-dependent proteasomal degradation via upregulation of E6AP levels in the presence of p53 or activating an ubiquitin-independent proteasomal degradation pathway in the absence of p53, which ultimately led to a decrease in HCV propagation. HCV core modulates its own protein level via a negative feedback loop involving p53 and PA28γ to control HCV replication in p53-positive hepatocytes, which may help HCV evade immune responses and establish chronic infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000655
2017-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/1/56.html?itemId=/content/journal/jgv/10.1099/jgv.0.000655&mimeType=html&fmt=ahah

References

  1. Caselmann WH, Alt M. Hepatitis C virus infection as a major risk factor for hepatocellular carcinoma. J Hepatol 1996; 24:61–66[PubMed]
    [Google Scholar]
  2. Suzuki T, Aizaki H, Murakami K, Shoji I, Wakita T. Molecular biology of hepatitis C virus. J Gastroenterol 2007; 42:411–423 [View Article][PubMed]
    [Google Scholar]
  3. Koike K. Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways. J Gastroenterol Hepatol 2007; 22:S108–S111 [View Article][PubMed]
    [Google Scholar]
  4. Liang TJ, Heller T. Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology 2004; 127:S62–S71 [View Article][PubMed]
    [Google Scholar]
  5. Shoji I. Roles of the two distinct proteasome pathways in hepatitis C virus infection. World J Virol 2012; 1:44–50 [View Article][PubMed]
    [Google Scholar]
  6. Suzuki R, Moriishi K, Fukuda K, Shirakura M, Ishii K et al. Proteasomal turnover of hepatitis C virus core protein is regulated by two distinct mechanisms: a ubiquitin-dependent mechanism and a ubiquitin-independent but PA28gamma-dependent mechanism. J Virol 2009; 83:2389–2392 [View Article][PubMed]
    [Google Scholar]
  7. Dubiel W, Pratt G, Ferrell K, Rechsteiner M. Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem 1992; 267:22369–22377[PubMed]
    [Google Scholar]
  8. Ma CP, Slaughter CA, Demartino GN. Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J Biol Chem 1992; 267:10515–10523[PubMed]
    [Google Scholar]
  9. Mao I, Liu J, Li X, Luo H. REGgamma, a proteasome activator and beyond?. Cell Mol Life Sci 2008; 65:3971–3980 [View Article][PubMed]
    [Google Scholar]
  10. Liu J, Yu G, Zhao Y, Zhao D, Wang Y et al. REGgamma modulates p53 activity by regulating its cellular localization. J Cell Sci 2010; 123:4076–4084 [View Article][PubMed]
    [Google Scholar]
  11. Zhang Z, Zhang R. Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation. EMBO J 2008; 27:852–864 [View Article][PubMed]
    [Google Scholar]
  12. Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell 2007; 26:843–852 [View Article][PubMed]
    [Google Scholar]
  13. Li X, Amazit L, Long W, Lonard DM, Monaco JJ et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 2007; 26:831–842 [View Article][PubMed]
    [Google Scholar]
  14. He J, Cui L, Zeng Y, Wang G, Zhou P et al. REGγ is associated with multiple oncogenic pathways in human cancers. BMC Cancer 2012; 12:75 [View Article][PubMed]
    [Google Scholar]
  15. Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y et al. Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA 2007; 104:1661–1666 [View Article][PubMed]
    [Google Scholar]
  16. Moriishi K, Okabayashi T, Nakai K, Moriya K, Koike K et al. Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 2003; 77:10237–10249 [View Article][PubMed]
    [Google Scholar]
  17. Shirakura M, Murakami K, Ichimura T, Suzuki R, Shimoji T et al. E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 2007; 81:1174–1185 [View Article][PubMed]
    [Google Scholar]
  18. Moriishi K, Shoji I, Mori Y, Suzuki R, Suzuki T et al. Involvement of PA28gamma in the propagation of hepatitis C virus. Hepatology 2010; 52:411–420 [View Article][PubMed]
    [Google Scholar]
  19. Lu W, Lo SY, Chen M, Wu K, Fung YK et al. Activation of p53 tumor suppressor by hepatitis C virus core protein. Virology 1999; 264:134–141 [View Article][PubMed]
    [Google Scholar]
  20. Seo YL, Heo S, Jang KL. Hepatitis C virus core protein overcomes H2O2-induced apoptosis by downregulating p14 expression via DNA methylation. J Gen Virol 2015; 96:822–832 [View Article][PubMed]
    [Google Scholar]
  21. Wan ZX, Yuan DM, Zhuo YM, Yi X, Zhou J et al. The proteasome activator PA28γ, a negative regulator of p53, is transcriptionally up-regulated by p53. Int J Mol Sci 2014; 15:2573–2584 [View Article][PubMed]
    [Google Scholar]
  22. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275:8945–8951 [View Article][PubMed]
    [Google Scholar]
  23. Inuzuka H, Fukushima H, Shaik S, Wei W. Novel insights into the molecular mechanisms governing Mdm2 ubiquitination and destruction. Oncotarget 2010; 1:685–690 [View Article][PubMed]
    [Google Scholar]
  24. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014; 14:359–370 [View Article][PubMed]
    [Google Scholar]
  25. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene 1999; 18:7644–7655 [View Article][PubMed]
    [Google Scholar]
  26. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell 2007; 28:739–745 [View Article][PubMed]
    [Google Scholar]
  27. Machida K, Cheng KT, Sung VM, Lee KJ, Levine AM et al. Hepatitis C virus infection activates the immunologic (type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes. J Virol 2004; 78:8835–8843 [View Article][PubMed]
    [Google Scholar]
  28. Kwak J, Shim JH, Tiwari I, Jang KL. Hepatitis C virus core protein inhibits E6AP expression via DNA methylation to escape from ubiquitin-dependent proteasomal degradation. Cancer Lett 2016; 380:59–68 [View Article][PubMed]
    [Google Scholar]
  29. Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 2004; 126:840–848 [View Article][PubMed]
    [Google Scholar]
  30. Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K et al. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 1997; 78:1527–1531 [View Article][PubMed]
    [Google Scholar]
  31. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 1998; 4:1065–1067 [View Article][PubMed]
    [Google Scholar]
  32. Miyamoto H, Moriishi K, Moriya K, Murata S, Tanaka K et al. Involvement of the PA28gamma-dependent pathway in insulin resistance induced by hepatitis C virus core protein. J Virol 2007; 81:1727–1735 [View Article][PubMed]
    [Google Scholar]
  33. Okamura T, Taniguchi S, Ohkura T, Yoshida A, Shimizu H et al. Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. J Clin Endocrinol Metab 2003; 88:1374–1383 [View Article][PubMed]
    [Google Scholar]
  34. Roessler M, Rollinger W, Mantovani-Endl L, Hagmann ML, Palme S et al. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol Cell Proteomics 2006; 5:2092–2101 [View Article][PubMed]
    [Google Scholar]
  35. Wang X, Tu S, Tan J, Tian T, Ran L et al. REG gamma: a potential marker in breast cancer and effect on cell cycle and proliferation of breast cancer cell. Med Oncol 2011; 28:31–41 [View Article][PubMed]
    [Google Scholar]
  36. Otsuka M, Kato N, Lan K, Yoshida H, Kato J et al. Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability. J Biol Chem 2000; 275:34122–34130 [View Article][PubMed]
    [Google Scholar]
  37. Machida K, Cheng KT, Sung VM, Shimodaira S, Lindsay KL et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc Natl Acad Sci USA 2004; 101:4262–4267 [View Article][PubMed]
    [Google Scholar]
  38. Arora P, Kim EO, Jung JK, Jang KL. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett 2008; 261:244–252 [View Article][PubMed]
    [Google Scholar]
  39. Blight KJ, Mckeating JA, Rice CM. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 2002; 76:13001–13014 [View Article][PubMed]
    [Google Scholar]
  40. Park SH, Lim JS, Lim SY, Tiwari I, Jang KL. Hepatitis C virus core protein stimulates cell growth by down-regulating p16 expression via DNA methylation. Cancer Lett 2011; 310:61–68 [View Article][PubMed]
    [Google Scholar]
  41. Kato T, Date T, Miyamoto M, Furusaka A, Tokushige K et al. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 2003; 125:1808–1817 [View Article][PubMed]
    [Google Scholar]
  42. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T et al. Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 2005; 102:9294–9299 [View Article][PubMed]
    [Google Scholar]
  43. Takeuchi T, Katsume A, Tanaka T, Abe A, Inoue K et al. Real-time detection system for quantification of hepatitis C virus genome. Gastroenterology 1999; 116:636–642 [View Article][PubMed]
    [Google Scholar]
  44. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93:9821–9826 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000655
Loading
/content/journal/jgv/10.1099/jgv.0.000655
Loading

Data & Media loading...

Most cited Most Cited RSS feed