1887

Abstract

The genus contains a large number of positive-sense ssRNA viruses. While some are transmitted by mosquitoes or other arthropods and are pathogenic to humans and animals (e.g. dengue and Zika viruses), some are insect-specific and do not replicate in vertebrate cells. These are known as insect-specific flaviviruses (ISFs). Cell fusing agent virus (CFAV) was the first described ISF, which was detected in an cell line, Aag2. Here, we investigated the effect of , a widespread endosymbiont of many insect species, that is known to block replication of several pathogenic flaviviruses, on CFAV. Our results demonstrated that, in mosquito cells, vastly suppresses replication of CFAV, with significantly less CFAV viral interfering small RNAs produced in the cells. However, removal of with tetracycline led to increased CFAV replication. These results suggest that is also able to suppress an ISF.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000653
2016-12-16
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3427.html?itemId=/content/journal/jgv/10.1099/jgv.0.000653&mimeType=html&fmt=ahah

References

  1. Bian G., Xu Y., Lu P., Xie Y., Xi Z.. 2010; The endosymbiotic bacterium Wolbachia induces resistance to Dengue virus in Aedes aegypti. PLoS Pathog6:e1000833 [CrossRef][PubMed]
    [Google Scholar]
  2. Bian G., Joshi D., Dong Y., Lu P., Zhou G., Pan X., Xu Y., Dimopoulos G., Xi Z.. 2013; Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science340:748–751 [CrossRef][PubMed]
    [Google Scholar]
  3. Blagrove M. S. C., Arias-Goeta C., Failloux A.-B., Sinkins S. P.. 2012; Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci U S A102:255–260[CrossRef]
    [Google Scholar]
  4. Blitvich B. J., Firth A. E.. 2015; Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses7:1927–1959 [CrossRef][PubMed]
    [Google Scholar]
  5. Bolling B. G., Olea-Popelka F. J., Eisen L., Moore C. G., Blair C. D.. 2012; Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology427:90–97 [CrossRef][PubMed]
    [Google Scholar]
  6. Bolling B. G., Weaver S. C., Tesh R. B., Vasilakis N.. 2015; Insect-specific virus discovery: significance for the arbovirus community. Viruses7:4911–4928 [CrossRef][PubMed]
    [Google Scholar]
  7. Bourtzis K.. 2008; Wolbachia-based technologies for insect pest population control. Adv Exp Med Biol627:104–113 [CrossRef][PubMed]
    [Google Scholar]
  8. Bronkhorst A. W., van Rij R. P.. 2014; The long and short of antiviral defense: small RNA-based immunity in insects. Curr Opin Virol7:19–28 [CrossRef][PubMed]
    [Google Scholar]
  9. Calzolari M., Zé-Zé L., Růžek D., Vázquez A., Jeffries C., Defilippo F., Osório H. C., Kilian P., Ruíz S. et al. 2012; Detection of mosquito-only flaviviruses in Europe. J Gen Virol93:1215–1225 [CrossRef][PubMed]
    [Google Scholar]
  10. Cammisa-Parks H., Cisar L. A., Kane A., Stollar V.. 1992; The complete nucleotide sequence of cell fusing agent (CFA): homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology189:511–524[PubMed][CrossRef]
    [Google Scholar]
  11. Cook S., Moureau G., Harbach R. E., Mukwaya L., Goodger K., Ssenfuka F., Gould E., Holmes E. C., de Lamballerie X.. 2009; Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol90:2669–2678 [CrossRef][PubMed]
    [Google Scholar]
  12. Cook S., Moureau G., Kitchen A., Gould E. A., de Lamballerie X., Holmes E. C., Harbach R. E.. 2012; Molecular evolution of the insect-specific flaviviruses. J Gen Virol93:223–234 [CrossRef][PubMed]
    [Google Scholar]
  13. Crabtree M. B., Nga P. T., Miller B. R.. 2009; Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam. Arch Virol154:857–860 [CrossRef][PubMed]
    [Google Scholar]
  14. Dutra H. L., Rocha M. N., Dias F. B., Mansur S. B., Caragata E. P., Moreira L. A.. 2016; Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe19:771–774 [CrossRef][PubMed]
    [Google Scholar]
  15. Espinoza-Gómez F., López-Lemus A. U., Rodriguez-Sanchez I. P., Martinez-Fierro M. L., Newton-Sánchez O. A., Chávez-Flores E., Delgado-Enciso I.. 2011; Detection of sequences from a potentially novel strain of cell fusing agent virus in Mexican Stegomyia (Aedes) aegypti mosquitoes. Arch Virol156:1263–1267 [CrossRef][PubMed]
    [Google Scholar]
  16. Frentiu F. D., Robinson J., Young P. R., McGraw E. A., O'Neill S. L.. 2010; Wolbachia-mediated resistance to dengue virus infection and death at the cellular level. PLoS One5:e13398 [CrossRef][PubMed]
    [Google Scholar]
  17. Goenaga S., Fabbri C. M., García J. B., Rondán J. C., Gardenal N., Calderón G. E., Enria D. A., Levis S. M.. 2014; New strains of Culex flavivirus isolated in Argentina. J Med Entomol51:900–906[PubMed][CrossRef]
    [Google Scholar]
  18. Hall-Mendelin S., McLean B. J., Bielefeldt-Ohmann H., Hobson-Peters J., Hall R. A., van den Hurk A. F.. 2016; The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit Vectors9:414 [CrossRef][PubMed]
    [Google Scholar]
  19. Hedges L. M., Yamada R., O'Neill S. L., Johnson K. N.. 2012; The small interfering RNA pathway is not essential for Wolbachia-mediated antiviral protection in Drosophila melanogaster. Appl Environ Microbiol78:6773–6776 [CrossRef][PubMed]
    [Google Scholar]
  20. Hilgenboecker K., Hammerstein P., Schlattmann P., Telschow A., Werren J. H.. 2008; How many species are infected with Wolbachia? – A statistical analysis of current data. FEMS Microbiol Lett218:215–220[CrossRef]
    [Google Scholar]
  21. Hobson-Peters J., Yam A. W., Lu J. W., Setoh Y. X., May F. J., Kurucz N., Walsh S., Prow N. A., Davis S. S. et al. 2013; A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells. PLoS One8:e56534 [CrossRef][PubMed]
    [Google Scholar]
  22. Hoshino K., Isawa H., Tsuda Y., Yano K., Sasaki T., Yuda M., Takasaki T., Kobayashi M., Sawabe K.. 2007; Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology359:405–414 [CrossRef][PubMed]
    [Google Scholar]
  23. Hussain M., Lu G., Torres S., Edmonds J. H., Kay B. H., Khromykh A. A., Asgari S.. 2013; Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J Virol87:851–858 [CrossRef][PubMed]
    [Google Scholar]
  24. Jeyaprakash A., Hoy M. A.. 2000; Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol9:393–405[PubMed][CrossRef]
    [Google Scholar]
  25. Johnson K. N.. 2015; Bacteria and antiviral immunity in insects. Curr Opin Insect Sci 8:97–103 [CrossRef]
    [Google Scholar]
  26. Junglen S., Kopp A., Kurth A., Pauli G., Ellerbrok H., Leendertz F. H.. 2009; A new flavivirus and a new vector: characterization of a novel flavivirus isolated from uranotaenia mosquitoes from a tropical rain forest. J Virol83:4462–4468 [CrossRef][PubMed]
    [Google Scholar]
  27. Kambris Z., Cook P. E., Phuc H. K., Sinkins S. P.. 2009; Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science326:134–136 [CrossRef][PubMed]
    [Google Scholar]
  28. Kenney J. L., Solberg O. D., Langevin S. A., Brault A. C.. 2014; Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol95:2796–2808 [CrossRef][PubMed]
    [Google Scholar]
  29. Kent R. J., Crabtree M. B., Miller B. R.. 2010; Transmission of West Nile virus by Culex quinquefasciatus Say infected with Culex flavivirus Izabal. PLoS Neglect Trop Dis4:e671[CrossRef]
    [Google Scholar]
  30. Khoo C. C., Venard C. M., Fu Y., Mercer D. R., Dobson S. L.. 2013; Infection, growth and maintenance of Wolbachia pipientis in clonal and non-clonal Aedes albopictus cell cultures. Bull Entomol Res103:251–260 [CrossRef][PubMed]
    [Google Scholar]
  31. Kihara Y., Satho T., Eshita Y., Sakai K., Kotaki A., Takasaki T., Rongsriyam Y., Komalamisra N., Srisawat R. et al. 2007; Rapid determination of viral RNA sequences in mosquitoes collected in the field. J Virol Methods146:372–374 [CrossRef][PubMed]
    [Google Scholar]
  32. Lu P., Bian G., Pan X., Xi Z.. 2012; Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis6:e1754 [CrossRef][PubMed]
    [Google Scholar]
  33. Lutomiah J. J., Mwandawiro C., Magambo J., Sang R. C.. 2007; Infection and vertical transmission of Kamiti river virus in laboratory bred Aedes aegypti mosquitoes. J Insect Sci7:1–7 [CrossRef][PubMed]
    [Google Scholar]
  34. Mayoral J., Etebari K., Hussain M., Khromykh A., Asgari S.. 2014a; Wolbachia infection modifies the profile, shuttling and structure of microRNAs in a mosquito cell line. PLoS One9:e96107[CrossRef]
    [Google Scholar]
  35. Mayoral J. G., Hussain M., Joubert D. A., Iturbe-Ormaetxe I., O’Neill S. L., Asgari S.. 2014b; Wolbachia small non-coding RNAs and their role in cross-kingdom communications. Proc Natl Acad Sci U S A111:18721–18726[CrossRef]
    [Google Scholar]
  36. McFarlane M., Arias-Goeta C., Martin E., O'Hara Z., Lulla A., Mousson L., Rainey S. M., Misbah S., Schnettler E. et al. 2014; Characterization of Aedes aegypti innate-immune pathways that limit Chikungunya virus replication. PLoS Negl Trop Dis8:e2994 [CrossRef][PubMed]
    [Google Scholar]
  37. McMeniman C. J., O'Neill S. L.. 2010; A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis4:e748 [CrossRef][PubMed]
    [Google Scholar]
  38. McMeniman C. J., Lane R., Cass B. N., Fong A. W., Sidhu M., Wang Y. F., O'Neill S. L.. 2009; Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science323:141–144 [CrossRef][PubMed]
    [Google Scholar]
  39. Min K. T., Benzer S.. 1997; Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A94:10792–10796[PubMed][CrossRef]
    [Google Scholar]
  40. Moreira L. A., Iturbe-Ormaetxe I., Jeffery J. A., Lu G., Pyke A. T., Hedges L. M., Rocha B. C., Hall-Mendelin S., Day A. et al. 2009; A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell139:1268–1278 [CrossRef][PubMed]
    [Google Scholar]
  41. Nasar F., Erasmus J. H., Haddow A. D., Tesh R. B., Weaver S. C.. 2015; Eilat virus induces both homologous and heterologous interference. Virology484:51–58 [CrossRef][PubMed]
    [Google Scholar]
  42. Osborne S. E., Iturbe-Ormaetxe I., Brownlie J. C., O'Neill S. L., Johnson K. N.. 2012; Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl Environ Microbiol78:6922–6929 [CrossRef][PubMed]
    [Google Scholar]
  43. Roby J., Hall R. A., Khromykh A. A.. 2012; Flavivirus replication and assembly. In Molecular Virology and Control of Flaviviruses pp.21–50 Edited by Shi P.-Y.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  44. Saiyasombat R., Bolling B. G., Brault A. C., Bartholomay L. C., Blitvich B. J.. 2011; Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J Med Entomol48:1031–1038[PubMed][CrossRef]
    [Google Scholar]
  45. Sang R. C., Gichogo A., Gachoya J., Dunster M. D., Ofula V., Hunt A. R., Crabtree M. B., Miller B. R., Dunster L. M.. 2003; Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol148:1085–1093 [CrossRef][PubMed]
    [Google Scholar]
  46. Schnettler E., Sreenu V. B., Mottram T., McFarlane M.. 2016; Wolbachia restricts insect specific flavivirus infection in Aedes aegypti cells. J Gen Virol79:3024–3029 [CrossRef]
    [Google Scholar]
  47. Stollar V., Thomas V. L.. 1975; An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology64:367–377[PubMed][CrossRef]
    [Google Scholar]
  48. Vodovar N., Bronkhorst A. W., van Cleef K. W., Miesen P., Blanc H., van Rij R. P., Saleh M. C.. 2012; Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One7:e30861 [CrossRef][PubMed]
    [Google Scholar]
  49. Xi Z., Khoo C. C., Dobson S. L.. 2005; Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science310:326–328 [CrossRef][PubMed]
    [Google Scholar]
  50. Yamanaka A., Thongrungkiat S., Ramasoota P., Konishi E.. 2013; Genetic and evolutionary analysis of cell-fusing agent virus based on Thai strains isolated in 2008 and 2012. Infect Genet Evol19:188–194 [CrossRef][PubMed]
    [Google Scholar]
  51. Ye Y., Carrasco A., Frentiu F., Chenoweth S., Beebe N., van den Hurk A., Simmons C., O'Neill S., McGraw E.. 2015; Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti. PLoS Neg Trop Dis9:e0003894[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000653
Loading
/content/journal/jgv/10.1099/jgv.0.000653
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error