1887

Abstract

Long-range axonal retrograde transport is a key mechanism for the cellular dissemination of neuroinvasive viruses, such as Borna disease virus (BDV), for which entry and egress sites are usually distant from the nucleus, where viral replication takes place. Although BDV is known to disseminate very efficiently in neurons, both and in primary cultures, the modalities of its axonal transport are still poorly characterized. In this work, we combined different methodological approaches, such as confocal microscopy and biochemical purification of endosomes, to study BDV retrograde transport. We demonstrate that BDV ribonucleoparticles (composed of the viral genomic RNA, nucleoprotein and phosphoprotein), as well as the matrix protein, are transported towards the nucleus into endocytic carriers. These specialized organelles, called signalling endosomes, are notably used for the retrograde transport of neurotrophins and activated growth factor receptors. Signalling endosomes have a neutral luminal pH and thereby offer protection against degradation during long-range transport. This particularity could allow the viral particles to be delivered intact to the cell body of neurons, avoiding their premature release in the cytoplasm.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000652
2016-12-16
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3215.html?itemId=/content/journal/jgv/10.1099/jgv.0.000652&mimeType=html&fmt=ahah

References

  1. Ascaño M., Richmond A., Borden P., Kuruvilla R.. 2009; Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J Neurosci29:11674–11685 [CrossRef][PubMed]
    [Google Scholar]
  2. Bajramovic J. J., Münter S., Syan S., Nehrbass U., Brahic M., Gonzalez-Dunia D.. 2003; Borna disease virus glycoprotein is required for viral dissemination in neurons. J Virol77:12222–12231 [CrossRef][PubMed]
    [Google Scholar]
  3. Bohnert S., Schiavo G.. 2005; Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. J Biol Chem280:42336–42344 [CrossRef][PubMed]
    [Google Scholar]
  4. Bonnaud E. M., Szelechowski M., Bétourné A., Foret C., Thouard A., Gonzalez-Dunia D., Malnou C. E.. 2015; Borna disease virus phosphoprotein modulates epigenetic signaling in neurons to control viral replication. J Virol89:5996–6008 [CrossRef][PubMed]
    [Google Scholar]
  5. Bucci C., Alifano P., Cogli L.. 2014; The role of Rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes4:642–677 [CrossRef][PubMed]
    [Google Scholar]
  6. Charlier C. M., Wu Y. J., Allart S., Malnou C. E., Schwemmle M., Gonzalez-Dunia D.. 2013; Analysis of Borna disease virus trafficking in live infected cells by using a virus encoding a tetracysteine-tagged P protein. J Virol87:12339–12348 [CrossRef][PubMed]
    [Google Scholar]
  7. Chasan A. I., Beyer M., Kurts C., Burgdorf S.. 2013; Isolation of a specialized, antigen-loaded early endosomal subpopulation by flow cytometry. Methods Mol Biol960:379–388 [CrossRef][PubMed]
    [Google Scholar]
  8. Chavrier P., Parton R. G., Hauri H. P., Simons K., Zerial M.. 1990; Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell62:317–329 [CrossRef][PubMed]
    [Google Scholar]
  9. Clemente R., de la Torre J. C.. 2007; Cell-to-cell spread of Borna disease virus proceeds in the absence of the virus primary receptor and furin-mediated processing of the virus surface glycoprotein. J Virol81:5968–5977 [CrossRef][PubMed]
    [Google Scholar]
  10. Clemente R., de la Torre J. C.. 2009; Cell entry of Borna disease virus follows a clathrin-mediated endocytosis pathway that requires Rab5 and microtubules. J Virol83:10406–10416 [CrossRef][PubMed]
    [Google Scholar]
  11. Daito T., Fujino K., Honda T., Matsumoto Y., Watanabe Y., Tomonaga K.. 2011a; A novel borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. J Virol85:12170–12178 [CrossRef]
    [Google Scholar]
  12. Daito T., Fujino K., Watanabe Y., Ikuta K., Tomonaga K.. 2011b; Analysis of intracellular distribution of Borna disease virus glycoprotein fused with fluorescent markers in living cells. J Vet Med Sci73:1243–1247[CrossRef]
    [Google Scholar]
  13. de la Torre J. C.. 1994; Molecular biology of Borna disease virus: prototype of a new group of animal viruses. J Virol68:7669–7675[PubMed]
    [Google Scholar]
  14. de la Torre J. C.. 2002; Molecular biology of Borna disease virus and persistence. Front Biosci7:d569–d579 [CrossRef][PubMed]
    [Google Scholar]
  15. Debaisieux S., Encheva V., Chakravarty P., Snijders A. P., Schiavo G.. 2016; Analysis of signaling endosome composition and dynamics using SILAC in embryonic stem cell-derived neurons. Mol Cell Proteomics15:542–557 [CrossRef][PubMed]
    [Google Scholar]
  16. Deinhardt K., Salinas S., Verastegui C., Watson R., Worth D., Hanrahan S., Bucci C., Schiavo G.. 2006; Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron52:293–305 [CrossRef][PubMed]
    [Google Scholar]
  17. Diefenbach R. J., Miranda-Saksena M., Douglas M. W., Cunningham A. L.. 2008; Transport and egress of herpes simplex virus in neurons. Rev Med Virol18:35–51 [CrossRef][PubMed]
    [Google Scholar]
  18. Gonzalez-Dunia D., Cubitt B., de la Torre J. C.. 1998; Mechanism of Borna disease virus entry into cells. J Virol72:783–788[PubMed]
    [Google Scholar]
  19. Gonzalez-Dunia D., Volmer R., Mayer D., Schwemmle M.. 2005; Borna disease virus interference with neuronal plasticity. Virus Res111:224–234 [CrossRef][PubMed]
    [Google Scholar]
  20. Lalli G., Schiavo G.. 2002; Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. J Cell Biol156:233–239 [CrossRef][PubMed]
    [Google Scholar]
  21. Lalli G., Herreros J., Osborne S. L., Montecucco C., Rossetto O., Schiavo G.. 1999; Functional characterisation of tetanus and botulinum neurotoxins binding domains. J Cell Sci112:2715–2724[PubMed]
    [Google Scholar]
  22. Lalli G., Bohnert S., Deinhardt K., Verastegui C., Schiavo G.. 2003; The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol11:431–437 [CrossRef][PubMed]
    [Google Scholar]
  23. Lennartz F., Bayer K., Czerwonka N., Lu Y., Kehr K., Hirz M., Steinmetzer T., Garten W., Herden C.. 2016; Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell. Cell Microbiol18:340–354 [CrossRef][PubMed]
    [Google Scholar]
  24. Lipkin W. I., Briese T., Hornig M.. 2011; Borna disease virus – fact and fantasy. Virus Res162:162–172 [CrossRef][PubMed]
    [Google Scholar]
  25. Marra P., Maffucci T., Daniele T., Tullio G. D., Ikehara Y., Chan E. K., Luini A., Beznoussenko G., Mironov A., De Matteis M. A.. 2001; The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat Cell Biol3:1101–1113 [CrossRef][PubMed]
    [Google Scholar]
  26. Mitchell D. J., Blasier K. R., Jeffery E. D., Ross M. W., Pullikuth A. K., Suo D., Park J., Smiley W. R., Lo K. W. et al. 2012; Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci 32:15495–15510[CrossRef]
    [Google Scholar]
  27. Prat C. M., Schmid S., Farrugia F., Cenac N., Le Masson G., Schwemmle M., Gonzalez-Dunia D.. 2009; Mutation of the protein kinase C site in Borna disease virus phosphoprotein abrogates viral interference with neuronal signaling and restores normal synaptic activity. PLoS Pathog5:e1000425 [CrossRef][PubMed]
    [Google Scholar]
  28. Salinas S., Bilsland L. G., Henaff D., Weston A. E., Keriel A., Schiavo G., Kremer E. J.. 2009; CAR-associated vesicular transport of an adenovirus in motor neuron axons. PLoS Pathog5:e1000442 [CrossRef][PubMed]
    [Google Scholar]
  29. Salinas S., Schiavo G., Kremer E. J.. 2010; A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nat Rev Microbiol8:645–655 [CrossRef][PubMed]
    [Google Scholar]
  30. Salomon I., Janssen H., Neefjes J.. 2010; Mechanical forces used for cell fractionation can create hybrid membrane vesicles. Int J Biol Sci6:649–654 [CrossRef][PubMed]
    [Google Scholar]
  31. Schweizer A., Fransen J. A., Bächi T., Ginsel L., Hauri H. P.. 1988; Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J Cell Biol107:1643–1653 [CrossRef][PubMed]
    [Google Scholar]
  32. Taylor M. P., Enquist L. W.. 2015; Axonal spread of neuroinvasive viral infections. Trends Microbiol23:283–288 [CrossRef][PubMed]
    [Google Scholar]
  33. Wada I., Rindress D., Cameron P. H., Ou W. J., Doherty J. J. 2nd., Louvard D., Bell A. W., Dignard D., Thomas D. Y., Bergeron J. J.. 1991; SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem266:19599–19610[PubMed]
    [Google Scholar]
  34. Wu Y. J., Schulz H., Lin C. C., Saar K., Patone G., Fischer H., Hübner N., Heimrich B., Schwemmle M.. 2013; Borna disease virus-induced neuronal degeneration dependent on host genetic background and prevented by soluble factors. Proc Natl Acad Sci U S A110:1899–1904 [CrossRef][PubMed]
    [Google Scholar]
  35. Zhou B., Cai Q., Xie Y., Sheng Z. H.. 2012; Snapin recruits dynein to BDNF-TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons. Cell Rep2:42–51 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000652
Loading
/content/journal/jgv/10.1099/jgv.0.000652
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error